Tries

Trie (Radix Tree): A dictionary for binary strings
- Comes from retrieval, but pronounced “try”
- A binary tree based on bitwise comparisons
- Similar to radix sort: use individual bits, not the whole key

Structure of trie:
- A left child corresponds to a 0 bit
- A right child corresponds to a 1 bit

Keys can have different number of bits

Keys are not stored in the trie: a node x is flagged if the path from root to x is a binary string present in the dictionary

Example: A trie for
\[S = \{00, 0001, 01001, 011, 01101, 01111, 110, 1101, 111\} \]

Tries: Search

Search(x):
- start from the root
- take the left link if the current bit in x is 0 and take the right link if it is 1; return failure if the link is missing
- if there are no extra bits in x left and the current node is flagged then
 - success (x is found)
- recurse
Tries: Search

Example: Search(011)

Tries: Search

Example: Search(0101)

Tries: Search

Example: Search(1101)

Tries: Insert

Insert(x)

- Search for x, and suppose we finish at a node v
 Note: x may have extra bits.
- Expand the trie from the node v by adding necessary nodes that correspond to extra bits of x; flag the last one.
Tries: Insert

Example: Insert(101)

Tries: Insert

Example: Insert(0100)

Tries: Insert

Example: Insert(11101)

Tries: Delete

Delete(x)

- Search for x
- if x found at an internal flagged node, then unflag the node
- if x found at a leaf \(v_x \), delete the leaf and all ancestors of \(v_x \) until
 - we reach an ancestor that has two children or
 - we reach a flagged node
Tries: Delete

Example: Delete(011)

Tries: Delete

Example: Delete(0001)

Tries: Delete

Example: Delete(01001)

Tries: Operations

- Search(x)
- Insert(x)
- Delete(x)

Time Complexity of all operations: $\Theta(|x|)$

$|x|$: length of binary string x, i.e., the number of bits in x
Compressed Tries (Patricia Tries)

- **Patricia**: Practical Algorithm To Retrieve Information Coded in Alphanumeric
- Introduced by Morrison (1968)
- Reduces **storage requirement**: eliminate unflagged nodes with only one child
- Every path of one-child unflagged nodes is compressed to a single edge
- Each node stores an **index** indicating the next bit to be tested during a search (index= 0 for the first bit, index= 1 for the second bit, etc)
- A compressed trie storing n keys always has at most $n - 1$ internal (non-leaf) nodes

Compressed Tries: Operations

- **Search(x)**:
 - Follow the proper path from the root down in the tree to a leaf
 - If search ends in an unflagged node, it is unsuccessful
 - If search ends in a flagged node, we need to check if the key stored is indeed x
Compressed Tries: Operations

Example: Search(11)

- Perform Search(x)
- If search ends in an internal node, then
 - If the node has two children, then unflag the node and delete the key
 - Else delete the node and make his only child, the child of its parent
- If search ends in a leaf, then delete the leaf and
- If its parent is unflagged, then delete the parent

Example: Search(101)

Example: Delete(110)

Compressed Tries: Operations

Example: Delete(011)

```
0
0
1
1
10
0 1
0 1
0
0 , −
1 , −
2 , −
2 , −
2 , 00
0001 01001 ,3 011
1111101
01101 01111
```

Multiway Tries

- To represent **Strings** over any **fixed alphabet** Σ
- Any node will have at most $|\Sigma|$ children
- Example: A trie holding strings \{bear, bell, ben, soul, soup\}

```
b s
e
o
a l n u
r l l p
```

Compressed Tries: Operations

- **Insert(x):**
 - Perform Search(x)
 - If the search ends at a leaf L with key y, compare x against y.
 - If y is a prefix of x, add a child to y containing x.
 - Else, determine the first index i where they disagree and create a **new node** N with index i.
 - Insert N along the path from the root to L so that the parent of N has index $< i$ and one child of N is either L or an existing node on the path from the root to L that has index $> i$.
 - The other child of N will be a **new leaf node** containing x.
 - If the search ends at an internal node, we find the key corresponding to that internal node and proceed in a similar way to the previous case.
Multiway Tries

- Append a special **end-of-word** character, say $, to all keys
- Example: A trie holding strings \{bear, bell, be, so, soul, soup\}

![Multiway Trie Diagram]

Compressed multi-way tries

- **Compressed** multi-way tries
- Example: A compressed trie holding strings \{bear, bell, be, so, soul, soup\}

![Compressed Multiway Trie Diagram]