Multi-Dimensional Data

- Various applications
 - Attributes of a product (laptop: price, screen size, processor speed, RAM, hard drive, …)
 - Attributes of an employee (name, age, salary, …)
- Dictionary for multi-dimensional data
 - A collection of \(d \)-dimensional items
 - Each item has \(d \) aspects (coordinates): \((x_0, x_1, \ldots, x_{d-1})\)
- Operations: insert, delete, range-search query
 - (Orthogonal) Range-search query: specify a range (interval) for certain aspects, and find all the items whose aspects fall within given ranges.
 - Example: laptops with screen size between 11 and 13 inches, RAM between 8 and 16 GB, price between 1,500 and 2,000 CAD

One-Dimensional Range Search

- First solution: ordered arrays
 - Running time:
 - Problem: does not generalize to higher dimensions
- Second solution: balanced BST (e.g., AVL tree)

\[
\text{BST-RangeSearch}(T, k_1, k_2)
\]

- \(T \): A balanced search tree, \(k_1, k_2 \): search keys
- Report keys in \(T \) that are in range \([k_1, k_2]\)
 1. if \(T = \text{nil} \) then return
 2. if \(\text{key}(T) < k_1 \) then
 3. \(\text{BST-RangeSearch}(T.\text{right}, k_1, k_2) \)
 4. if \(\text{key}(T) > k_2 \) then
 5. \(\text{BST-RangeSearch}(T.\text{left}, k_1, k_2) \)
 6. if \(k_1 \leq \text{key}(T) \leq k_2 \) then
 7. \(\text{BST-RangeSearch}(T.\text{left}, k_1, k_2) \)
 8. report \(\text{key}(T) \)
 9. \(\text{BST-RangeSearch}(T.\text{right}, k_1, k_2) \)
Range Search example

BST-RangeSearch(T, 30, 65)
Nodes either on boundary, inside, or outside.

Note: Not every boundary node is returned.

One-Dimensional Range Search

- P_1: path from the root to a leaf that goes right if $k < k_1$ and left otherwise
- P_2: path from the root to a leaf that goes left if $k > k_2$ and right otherwise
- Partition nodes of T into three groups:
 - **boundary nodes**: nodes in P_1 or P_2
 - **inside nodes**: non-boundary nodes that belong to either (a subtree rooted at a right child of a node of P_1) or (a subtree rooted at a left child of a node of P_2)
 - **outside nodes**: non-boundary nodes that belong to either (a subtree rooted at a left child of a node of P_1) or (a subtree rooted at a right child of a node of P_2)
- k: number of reported items
- Nodes visited during the search:
 - $O(\log n)$ boundary nodes
 - $O(k)$ inside nodes
 - No outside nodes
- Running time $O(\log n + k)$

2-Dimensional Range Search

- Each item has 2 **aspects** (coordinates): (x_i, y_i)
- Each item corresponds to a point in Euclidean plane
- Options for implementing d-dimensional dictionaries:
 - Reduce to one-dimensional dictionary: combine the d-dimensional key into one key
 - Problem: Range search on one aspect is not straightforward
 - Use several dictionaries: one for each dimension
 - Problem: inefficient, wastes space
 - **Partition trees**
 - A tree with n leaves, each leaf corresponds to an item
 - Each internal node corresponds to a region
 - **quadtrees, kd-trees**
 - multi-dimensional **range trees**

Quadtrees

- We have n points $P = \{(x_0, y_0), (x_1, y_1), \cdots, (x_{n-1}, y_{n-1})\}$ in the plane
- How to **build** a quadtree on P:
 - Find a square R that contains all the points of P (We can compute minimum and maximum x and y values among n points)
 - Root of the quadtree corresponds to R
 - **Split**: Partition R into four equal subsquares (**quadrants**), each correspond to a child of R
 - Recursively repeat this process for any node that contains more than one point
 - Points on split lines belong to left/bottom side
 - Each leaf stores (at most) one point
 - We can delete a leaf that does not contain any point
Quadtree Operations

- **Search**: Analogous to binary search trees
- **Insert**:
 - Search for the point
 - Split the leaf if there are two points
- **Delete**:
 - Search for the point
 - Remove the point
 - If its parent has only one child left, delete that child and continue the process toward the root.

Quadtree: Range Search

\[\text{QTree-RangeSearch}(T, R) \]

- **Spread factor** of points \(P \): \(\beta(P) = \frac{d_{\text{max}}}{d_{\text{min}}} \)
- **\(d_{\text{max}}(d_{\text{min}}) \)**: maximum (minimum) distance between two points in \(P \)
- **Height** of quadtree: \(h \in \Theta(\log_2 \frac{d_{\text{max}}}{d_{\text{min}}}) \)
- Complexity to build initial tree: \(\Theta(nh) \)
- Complexity of range search: \(\Theta(nh) \) even if the answer is \(\emptyset \)
kd-trees

- We have n points $P = \{(x_0, y_0), (x_1, y_1), \ldots, (x_{n-1}, y_{n-1})\}$ in the plane.
- Quadtrees split square into quadrants regardless of where points actually lie.
- kd-tree idea: Split the points into two (roughly) equal subsets.
- How to build a kd-tree on P:
 - Split P into two equal subsets using a vertical line.
 - Split each of the two subsets into two equal pieces using horizontal lines.
 - Continue splitting, alternating vertical and horizontal lines, until every point is in a separate region.
- More details:
 - Initially, we sort the n points according to their x-coordinates.
 - The root of the tree is the point with median x coordinate (index $\lceil n/2 \rceil$ in the sorted list).
 - All other points with x coordinate less than or equal to this go into the left subtree; points with larger x-coordinate go in the right subtree.
 - At alternating levels, we sort and split according to y-coordinates instead.
- Complexity: $\Theta(n \log n)$, height of the tree: $\Theta(\log n)$.

kd-tree: Range Search

```
k-rangeSearch(T, R, split[←'x'])
T: A kd-tree node, R: Query rectangle
1. if T is empty then return
2. if T.point ∈ R then
   3. report T.point
4. for each child C of T do
5.   if C.region ∩ R ≠ ∅ then
6.     k-rangeSearch(C, R)
7.   if split = 'x' then
8.     if T.point.x ≥ R.leftSide then
9.        k-rangeSearch(T.left, R, 'y')
10.     if T.point.x < R.rightSide then
11.        k-rangeSearch(T.right, R, 'y')
12.   if split = 'y' then
13.     if T.point.y ≥ R.bottomSide then
14.        k-rangeSearch(T.left, R, 'x')
15.     if T.point.y < R.topSide then
16.        k-rangeSearch(T.right, R, 'x')
```

kd-tree: Range Search Complexity

- The complexity is $O(k + U)$ where k is the number of keys reported and U is the number of regions we go to but unsuccessfully.
- U corresponds to the number of regions which intersect but are not fully in R.
- Those regions have to intersect one of the four sides of R.
- $Q(n)$: Maximum number of regions in a kd-tree with n points that intersect a vertical (horizontal) line.
- $Q(n)$ satisfies the following recurrence relation:

 \[Q(n) = 2Q(n/4) + O(1) \]

- It solves to $Q(n) = O(\sqrt{n})$.
- Therefore, the complexity of range search in kd-trees is $O(k + \sqrt{n})$.
Range Trees

- We have \(n \) points \(P = \{(x_0, y_0), (x_1, y_1), \ldots, (x_{n-1}, y_{n-1})\} \) in the plane
- A range tree is a tree of trees (a multi-level data structure)
- How to build a range tree on \(P \):
 - Build a balanced binary search tree \(\tau \) determined by the \(x \)-coordinates of the \(n \) points
 - For every node \(v \in \tau \), build a balanced binary search tree \(\tau_{assoc}(v) \) (associated structure of \(\tau \)) determined by the \(y \)-coordinates of the nodes in the subtree of \(\tau \) with root node \(v \)

Range Trees: Operations

- **Search**: trivially as in a binary search tree
- **Insert**: insert point in \(\tau \) by \(x \)-coordinate
- From inserted leaf, walk back up to the root and insert the point in all associated trees \(\tau_{assoc}(v) \) of nodes \(v \) on path to the root
- **Delete**: analogous to insertion
- **Note**: re-balancing is a problem!
Range Trees: Higher Dimensions

- Range trees for \(d\)-dimensional space
- Space/time trade-off
 - **Storage**: \(O(n (\log n)^{d-1})\)
 - **Construction time**: \(O(n (\log n)^{d-1})\)
 - **Range query time**: \(O((\log n)^{d-1} + k)\)

(Note: \(d\) is considered to be a constant.)