Key Concepts

- **Multi-dimensional data** consists of a collection of \(d \)-dimensional items with \(d \) aspects/coordinates.

- For \(d = 1 \), performing a **range search** is straightforward.
 - 1D range search in an ordered array — \(O(\log(n) + k) \)
 - 1D range search in a binary search tree — \(O(\log(n) + k) \)

- For \(d > 1 \), however, these methods do not scale easily.

- Instead, we use new data structures (based on trees) to store and search higher-dimensional data.

- **Quadtrees** partition a region of 2D points into equally-sized quadrants.
 - Construction — \(\Theta(nh) \)
 - Range search — \(\Theta(nh) \)

- **kd-trees** partition a region of 2D points based on the median point of each partition.
 - Construction — \(O(n \log(n)) \)
 - Range search — \(O(n^{1-1/d} + k) \)

- **Range trees** are a “tree of trees”; \(x \)- and \(y \)-coordinates of each 2D point are stored in their own tree
 - Construction — \(O(n(\log(n))^{d-1}) \)
 - Range search — \(O((\log(n))^d + k) \)

Suggested Readings

- **Goodrich/Tamassia**: 12.1 (Range Trees), 12.3 (Quadtrees and \(k \)-D Trees)
Practice Questions

Goodrich/Tamassia

R-12.8. What would be the worst-case space usage of a range tree, if the primary structure were not required to have $O(\log(n))$ height?

R-12.12. What is the worst-case depth of a k-d tree defined on n points in the plane? What about in higher dimensions?

R-12.13. Suppose a set S contains n two-dimensional points whose coordinates are all integers in the range $[0..N]$. What is the worst-case depth of a quadtree defined on S?

R-12.14. Draw a quadtree for the following set of points, assuming a 16×16 bounding box:

$$\{(1, 2), (4, 10), (14, 3), (6, 6), (3, 15), (2, 2), (3, 12), (9, 4), (12, 14)\}.$$

R-12.15. Construct a k-d tree for the point set of Exercise R-12.14.

C-12.2. Give a pseudocode description of an algorithm for constructing a range tree from a set of n points in the plane in $O(n \log(n))$ time.

C-12.4. Design a static data structure (which does not support insertions and deletions) that stores a two-dimensional set S of n points and can answer queries of the form $\text{CountAllInRange}(a, b, c, d)$ in $O(\log^2(n))$ time, which returns the number of points in S with x-coordinates in the range $[a..b]$ and y-coordinates in the range $[c..d]$. What is the space used by this structure?

C-12.5. Design a data structure for answering CountAllInRange queries (as defined in the previous exercise) in $O(\log(n))$ time.

(Hint: Think of storing auxiliary structures at each node that are “linked” to the structures at neighbouring nodes.)

C-12.6. Show how to extend the two-dimensional range tree so as to answer d-dimensional range-searching queries in $O(\log^d(n))$ time for a set of d-dimensional points, where $d \geq 2$ is a constant.

(Hint: Design a recursive data structure that builds a d-dimensional structure using $(d - 1)$-dimensional structures.)