Module 9: Tries and String Matching

CS 240 - Data Structures and Data Management

Sajed Haque Veronika Irvine Taylor Smith
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Spring 2017

Pattern Matching

- Search for a string (pattern) in a large body of text
- \(T[0..n-1] \) – The text (or haystack) being searched within
- \(P[0..m-1] \) – The pattern (or needle) being searched for
- Strings over alphabet \(\Sigma \)
- Return the first \(i \) such that
 \[
 P[j] = T[i+j] \quad \text{for} \quad 0 \leq j \leq m-1
 \]
- This is the first occurrence of \(P \) in \(T \)
- If \(P \) does not occur in \(T \), return FAIL
- Applications:
 - Information Retrieval (text editors, search engines)
 - Bioinformatics
 - Data Mining

Example:
- \(T = \) “Where is he?”
- \(P_1 = \) “he”
- \(P_2 = \) “who”

Definitions:
- Substring \(T[i..j] \) \(0 \leq i \leq j < n \): a string of length \(j - i + 1 \) which consists of characters \(T[i], \ldots, T[j] \) in order
- A prefix of \(T \): a substring \(T[0..i] \) of \(T \) for some \(0 \leq i < n \)
- A suffix of \(T \): a substring \(T[i..n-1] \) of \(T \) for some \(0 \leq i \leq n - 1 \)
General Idea of Algorithms

Pattern matching algorithms consist of guesses and checks:
- A **guess** is a position \(i \) such that \(P \) might start at \(T[i] \).
 Valid guesses (initially) are \(0 \leq i \leq n - m \).
- A **check** of a guess is a single position \(j \) with \(0 < j < m \) where we compare \(T[i + j] \) to \(P[j] \). We must perform \(m \) checks of a single correct guess, but may make (many) fewer checks of an incorrect guess.

We will diagram a single run of any pattern matching algorithm by a matrix of checks, where each row represents a single guess.

Brute-force Algorithm

Idea: Check every possible guess.

\[
\text{BruteforcePM}(T[0..n-1], P[0..m-1])
\]

- \(T \): String of length \(n \) (text), \(P \): String of length \(m \) (pattern)
- 1. for \(i \) ← 0 to \(n - m \) do
- 2. \(\text{match} \) ← true
- 3. \(j \) ← 0
- 4. while \(j < m \) and \(\text{match} \) do
- 5. if \(T[i + j] = P[j] \) then
- 6. \(j \) ← \(j + 1 \)
- 7. else
- 8. \(\text{match} \) ← false
- 9. if \(\text{match} \) then
- 10. return \(i \)
- 11. return \(\text{FAIL} \)

Example

- Example: \(T = \text{abbbabbbab}, P = \text{abba} \)

- What is the worst possible input?
 - \(P = a^{m-1}b \), \(T = a^n \)
 - Worst case performance \(\Theta((n - m + 1)m) \)
 - \(m \leq n/2 \) ⇒ \(\Theta(mn) \)
Pattern Matching

More sophisticated algorithms
- Deterministic finite automata (DFA)
- KMP, Boyer-Moore and Rabin-Karp
- Do extra preprocessing on the pattern P
- We eliminate guesses based on completed matches and mismatches.

String matching with finite automata
There is a string-matching automaton for every pattern P. It is constructed from the pattern in a preprocessing step before it can be used to search the text string.

Example: Automaton for the pattern $P = ababaca$

![String matching automaton diagram](image)

String matching with finite automata
Let P the pattern to search, of length m. Then
- the states of the automaton are $0, \ldots, m$
- the transition function δ of the automaton is defined as follows, for a state q and a character c in Σ:

$$\delta(q, c) = \ell(P[0..q-1]c),$$

where
- $P[0..q-1]c$ is the concatenation of $P[0..q-1]$ and c
- for a string s, $\ell(s) \in \{0, \ldots, m\}$ is the length of the longest prefix of P that is also a suffix of s.

Graphically, this corresponds to

![Graphical representation](image)
String matching with finite automata

Let T be the text string of length n, P the pattern to search of length m and δ the transition function of a finite automaton for pattern P.

FINITE-AUTOMATON-MATCHER(T, δ, m)

$n \leftarrow \text{length}[T]$
$q \leftarrow 0$
for $i \leftarrow 0$ to $n - 1$ do
$q \leftarrow \delta(q, T[i])$
if $q = m$
then print "Pattern occurs with shift" $i - (m - 1)$

Idea of proof: the state after reading $T[i]$ is $\ell(T[0..i])$.

Matching time on a text string of length n is $\Theta(n)$

This does not include the preprocessing time required to compute the transition function δ. There exists an algorithm with $O(m|\Sigma|)$ preprocessing time.

Altogether, we can find all occurrences of a length-m pattern in a length-n text over a finite alphabet Σ with $O(m|\Sigma|)$ preprocessing time and $\Theta(n)$ matching time.

KMP Algorithm

- Knuth-Morris-Pratt algorithm (1977)
- Compares the pattern to the text in left-to-right
- Shifts the pattern more intelligently than the brute-force algorithm
- When a mismatch occurs, how much can we shift the pattern (reusing knowledge from previous matches)?

$$T = \begin{array}{cccccccc}
 a & b & c & d & c & a & b & c & ? & ? \\
 a & b & c & d & c & a & b & a & a & a \\
 a & b & c & d & c & a & a & a & a & a
\end{array}$$

- **KMP Answer:** this depends on the largest prefix of $P[0..j]$ that is a suffix of $P[1..j]$
KMP Failure Array

Suppose we have a match up to position $T[i - 1] = P[j - 1]$, but not at the next position.

Define $F[j - 1]$ as the index we will have to check in P, after we bring the pattern to its next possible position (previous example: $j = 6$, $F[5] = 2$).

This can be computed by trying all sliding positions until finding the first one matching the text (as in previous example). We can do better:

- any possible sliding position corresponds to a prefix of $P[0..j - 1]$ that is also a strict suffix of it = a suffix of $P[1..j - 1]$
- the next possible sliding position corresponds to the largest such prefix / suffix
- we let $F[j - 1]$ be the length of this prefix / suffix.

KMP Failure Array

Schematically:

- T: a b b c a b c d...
- P: a b b c a b a a

what next slide would match with the text?
KMP Failure Array

- $F[0] = 0$
- $F[j]$, for $j > 0$, is the length of the largest prefix of $P[0..j]$ that is also a suffix of $P[1..j]$
- Consider $P = \text{abacaba}$

<table>
<thead>
<tr>
<th>j</th>
<th>$P[1..j]$</th>
<th>P</th>
<th>$F[j]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>abacaba</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>ba</td>
<td>abacaba</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>bac</td>
<td>abacaba</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>baca</td>
<td>abacaba 1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>bacab</td>
<td>abacaba 2</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>bacaba</td>
<td>abacaba 3</td>
<td></td>
</tr>
</tbody>
</table>

Haque, Irvine, Smith (SCS, UW) CS240 - Module 9 Spring 2017 16 / 43

Computing the Failure Array

```
def failureArray(P):
P: String of length m (pattern)
1. F[0] ← 0
2. i ← 1
3. j ← 0
4. while i < m do
5.   if P[i] = P[j] then
6.     F[i] ← j + 1
7.     i ← i + 1
8.     j ← j + 1
9. else if j > 0 then
10.    j ← F[j - 1]
11. else
12.    F[i] ← 0
13.    i ← i + 1
```

Haque, Irvine, Smith (SCS, UW) CS240 - Module 9 Spring 2017 17 / 43

KMP Algorithm

```
def KMP(T, P):
T: String of length n (text), P: String of length m (pattern)
1. F ← failureArray(P)
2. i ← 0
3. j ← 0
4. while i < n do
5.   if T[i] = P[j] then
6.     if j = m - 1 then
7.       return i - j //match
8.     else
9.       i ← i + 1
10.      j ← j + 1
11. else
12.   if j > 0 then
13.     j ← F[j - 1]
14. else
15.     i ← i + 1
16. return -1 // no match
```

Haque, Irvine, Smith (SCS, UW) CS240 - Module 9 Spring 2017 18 / 43
KMP: Example

\[P = \text{abacaba} \]
\[T = \text{abaxyabacabbaabacaba} \]

\[
\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
a & b & a & c & y & a & b \\
\hline
\end{array}
\]

Exercise: continue with \(T = \text{abaxyabacabbaabacaba} \)

KMP: Analysis

failureArray

- At each iteration of the while loop, at least one of the following happens:
 - \(i \) increases by one, or
 - the index \(i - j \) increases by at least one \((F[j - 1] < j)\)
- There are no more than 2\(m\) iterations of the while loop
- Running time: \(\Theta(m) \)

KMP

- failureArray can be computed in \(\Theta(m) \) time
- At each iteration of the while loop, at least one of the following happens:
 - \(i \) increases by one, or
 - the index \(i - j \) increases by at least one \((F[j - 1] < j)\)
- There are no more than 2\(n\) iterations of the while loop
- Running time: \(\Theta(n) \)

Boyer-Moore Algorithm

Based on three key ideas:

- **Reverse-order searching**: Compare \(P \) with a subsequence of \(T \) moving backwards
- **Bad character jumps**: When a mismatch occurs at \(T[i] = c \)
 - If \(P \) contains \(c \), we can shift \(P \) to align the last occurrence of \(c \) in \(P \) with \(T[i] \)
 - Otherwise, we can shift \(P \) to align \(P[0] \) with \(T[i+1] \)
- **Good suffix jumps**: If we have already matched a suffix of \(P \), then get a mismatch, we can shift \(P \) forward to align with the previous occurrence of that suffix (with a mismatch from the suffix we read). If none exists, look for the longest prefix of \(P \) that is a suffix of what we read. Similar to failure array in KMP.
- Can skip large parts of \(T \)
Bad character examples

\[P = a l d o \]
\[T = w h e r e i s w a l d o \]

6 comparisons (checks)

\[P = m o o r e \]
\[T = b o y e r m o o r e \]

7 comparisons (checks)

Good suffix examples

\[P = sells _ shells \]
\[s h e i l a _ s e l l s _ s h e l l s \]

\[P = o d e t o f o o d \]
\[i l i k e f o o d f r o m m e x i c o \]

- Good suffix moves further than bad character for 2nd guess.
- Bad character moves further than good suffix for 3rd guess.
- This is out of range, so pattern not found.

Last-Occurrence Function

- **Preprocess** the pattern \(P \) and the alphabet \(\Sigma \)
- Build the **last-occurrence function** \(L \) mapping \(\Sigma \) to integers
- \(L(c) \) is defined as
 - the largest index \(i \) such that \(P[i] = c \) or
 - \(-1\) if no such index exists
- Example: \(\Sigma = \{a, b, c, d\} \), \(P = abacab \)

<table>
<thead>
<tr>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L(c))</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>-1</td>
</tr>
</tbody>
</table>

- The last-occurrence function can be computed in time \(O(m + |\Sigma|) \)
- In practice, \(L \) is stored in a size-\(|\Sigma| \) array.
Good Suffix array

- Again, we preprocess P to build a table.
- **Suffix skip array** S of size m: for $0 \leq i < m$, $S[i]$ is the largest index j such that $P[i+1..m-1] = P[j+1..m-1-i]$ and $P[j] \neq P[i]$.
 - **Note**: in this calculation, any negative indices are considered to make the given condition true (these correspond to letters that we might not have checked yet).
- Similar to KMP failure array, with an extra condition.
- Computed similarly to KMP failure array in $\Theta(m)$ time.

Example: $P = \text{bonobobo}$

```
<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P[i]$</td>
<td>b</td>
<td>o</td>
<td>n</td>
<td>o</td>
<td>b</td>
<td>o</td>
<td>b</td>
<td>o</td>
</tr>
<tr>
<td>$S[i]$</td>
<td>-6</td>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>
```

Computed similarly to KMP failure array in $\Theta(m)$ time.

Boyer-Moore Algorithm

```
boyer-moore(T,P)
1. $L \leftarrow$ last occurrence array computed from $P$
2. $S \leftarrow$ good suffix array computed from $P$
3. $i \leftarrow m - 1$, $j \leftarrow m - 1$
4. while $i < n$ and $j \geq 0$ do
5.   if $T[i] = P[j]$ then
6.     $i \leftarrow i - 1$
7.   else
8.     $i \leftarrow i + m - 1 - \min(L[T[i]], S[j])$
9.     $j \leftarrow m - 1$
10. if $j = -1$ return $i + 1$
11. else return FAIL
```

Exercise: Prove that $i - j$ always increases on lines 9–10.
Boyer-Moore algorithm conclusion

- Worst-case running time $\in O(n + |\Sigma|)$
- This complexity is difficult to prove.
- Worst-case running time $O(nm)$ if we want to report all occurrences
- On typical English text the algorithm probes approximately 25% of the characters in T
- Faster than KMP in practice on English text.

Rabin-Karp Fingerprint Algorithm

Idea: use hashing

- Compute hash function for each text position
- No explicit hash table: just compare with pattern hash
- If a match of the hash value of the pattern and a text position found, then compares the pattern with the substring by naive approach

Example:
Hash "table" size = 97
Search Pattern P: 5 9 2 6 5
Search Text T: 3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6
Hash function: $h(x) = x \mod 97$ and $h(P) = 95$.
31415 mod 97 = 84
14159 mod 97 = 94
41592 mod 97 = 76
15926 mod 97 = 18
59265 mod 97 = 95

Guaranteeing correctness

- Need full compare on hash match to guard against collisions
 - $59265 \mod 97 = 95$
 - $59362 \mod 97 = 95$

Running time

- Hash function depends on m characters
- Running time is $\Theta(mn)$ for search miss (how can we fix this?)
Rabin-Karp Fingerprint Algorithm

The initial hashes are called **fingerprints**. Rabin & Karp discovered a way to update these fingerprints in constant time.

Idea:
To go from the hash of a substring in the text string to the next hash value only requires constant time.

- Use previous hash to compute next hash
- $O(1)$ time per hash, except first one

Example:
- Pre-compute: $10000 \mod 97 = 9$
- Previous hash: $41592 \mod 97 = 76$
- Next hash: $15926 \mod 97 = ??$

Observation:

\[
15926 \mod 97 = (41592 - (4 \times 10000)) \times 10 + 6
= (76 - (4 \times 9)) \times 10 + 6
= 406
= 18
\]

Rabin-Karp Fingerprint Algorithm

- Choose table size at random to be huge prime
- Expected running time is $O(m + n)$
- $\Theta(mn)$ worst-case, but this is (unbelievably) unlikely

Main advantage:
- Extends to 2d patterns and other generalizations
Suffix Tries and Suffix Trees

- What if we want to search for many patterns P within the same fixed text T?
- Idea: Preprocess the text T rather than the pattern P
- Observation: P is a substring of T if and only if P is a prefix of some suffix of T.

We will call a trie that stores all suffixes of a text T a suffix trie, and the compressed suffix trie of T a suffix tree.

Suffix Trees

- Build the suffix trie, i.e. the trie containing all the suffixes of the text
- Build the suffix tree by compressing the trie above (like in Patricia trees)
- Store two indexes l, r on each node v (both internal nodes and leaves) where node v corresponds to substring $T[l..r]$

Suffix Trie: Example

$T =$bananaban
{bananaban, ananaban, nanaban, anaban, naban, aban, ban, an, n}
Suffix Trees: Pattern Matching

To search for pattern P of length m:
- Similar to Search in compressed trie with the difference that we are looking for a prefix match rather than a complete match
- If we reach a leaf with a corresponding string length less than m, then search is unsuccessful
- Otherwise, we reach a node v (leaf or internal) with a corresponding string length of at least m
- It only suffices to check the first m characters against the substring of the text between indices of the node, to see if there indeed is a match
- We can then visit all children of the node to report all matches

Suffix Tree: Example

$T = \text{bananaban}$
$P = \text{ana}$
Suffix Tree: Example

$T = \text{bananaban}$
$P = \text{ban}$
Pattern Matching Conclusion

<table>
<thead>
<tr>
<th></th>
<th>Brute-Force</th>
<th>DFA</th>
<th>KMP</th>
<th>BM</th>
<th>RK</th>
<th>Suffix trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preproc.</td>
<td>–</td>
<td>(O(m</td>
<td>\Sigma</td>
<td>))</td>
<td>(O(m))</td>
<td>(O(m +</td>
</tr>
<tr>
<td>Search time:</td>
<td>(O(nm))</td>
<td>(O(n))</td>
<td>(O(n)) (often better)</td>
<td>(O(n + m)) (expected)</td>
<td>(O(n))</td>
<td>(O(m))</td>
</tr>
<tr>
<td>Extra space:</td>
<td>–</td>
<td>(O(m</td>
<td>\Sigma</td>
<td>))</td>
<td>(O(m))</td>
<td>(O(m +</td>
</tr>
</tbody>
</table>