Key Concepts

- **Pattern matching** is the process of finding some length-m pattern P in a length-n text T.
- The process consists of **guesses** (some position i such that P might start at $T[i]$) and **checks** (some position j, where $0 \leq j < m$, where we compare $P[j]$ to $T[i+j]$).
- The **brute-force algorithm** checks every possible guess between $T[0]$ and $T[n-m]$.
 - Time complexity — $O(nm)$
- The **DFA algorithm** builds an automaton that accepts the pattern or goes to a previous state on a mismatch.
 - Preprocessing — $O(m\Sigma)$
 - Time complexity — $O(n)$
 - Space complexity — $O(m\Sigma)$
- The **KMP algorithm** compares left-to-right and shifts based on a failure array.
 - The failure array tells us the length of the largest prefix of $P[0..j]$ that is a suffix of $P[1..j]$, where $j > 0$.
 - Preprocessing — $O(m)$
 - Time complexity — $O(n)$
 - Space complexity — $O(m)$
- The **Boyer–Moore algorithm** compares right-to-left and shifts based on bad characters and good suffixes.
 - The bad character heuristic aligns P with the last occurrence of some mismatched character $P[i] = c$.
 - The good suffix heuristic aligns an already-matched suffix of P with another occurrence of that suffix in P.
 - Preprocessing — $O(m + |\Sigma|)$
 - Time complexity — $O(n)$
 - Space complexity — $O(m + |\Sigma|)$
- **Rabin–Karp fingerprinting** hashes length-m windows of T to find occurrences of P.
 - Preprocessing — $O(m)$
 - Time complexity — $O(n + m)$ expected-case, $\Theta(nm)$ worst-case
 - Space complexity — $O(1)$
- **Suffix tries** store all suffixes of T in a trie, and **suffix trees** are compressed suffix tries.
- If P occurs in T, then P is a prefix of some suffix of T, so we can search the trie to perform matching.
 - Preprocessing — $O(n^2)$ na"ively, reducible to $O(n)$ but more complicated
 - Time complexity — $O(m)$
 - Space complexity — $O(n)$

Suggested Readings

- **CLRS**: Chapter 32 (String Matching)
- **Goodrich/Tamassia**: 9.1 (Strings and Pattern Matching Algorithms), 9.2 (Tries)
Practice Questions

CLRS

32.1-1. Show the comparisons the brute force pattern-matching algorithm makes for the pattern \(P = 0001 \) in the text \(T = 00010001010001 \).

32.1-2. Suppose that all characters in the pattern \(P \) are different. Show how to accelerate our brute force pattern-matching algorithm to run in time \(O(n) \) on an \(n \)-character text \(T \).

32.2-1. Working modulo \(q = 11 \), how many spurious hits does the Rabin–Karp matcher encounter in the text \(T = 3141592653589793 \) when looking for the pattern \(P = 26 \)?

32.2-2. How would you extend the Rabin–Karp method to the problem of searching a text string for an occurrence of any one of a given set of \(k \) patterns? Start by assuming that all \(k \) patterns have the same length. Then generalize your solution to allow the patterns to have different lengths.

32.2-3. Show how to extend the Rabin–Karp method to handle the problem of looking for a given \(m \times m \) pattern in an \(n \times n \) array of characters. (The pattern may be shifted vertically and horizontally, but it may not be rotated.)

32.3-1. Construct the string-matching automaton for the pattern \(P = \text{aabab} \) and illustrate its operation on the text string \(T = \text{aaababaabaababaab} \).

32.3-2. Draw a state-transition diagram for a string-matching automaton for the pattern \(\text{ababbababbababbababb} \) over the alphabet \(\Sigma = \{a, b\} \).

32.4-1. Compute the KMP failure array for the pattern \(\text{ababbababbababb} \).

Goodrich/Tamassia

R-9.2. Draw a figure illustrating the comparisons done by the brute force pattern-matching algorithm for the case when the text is \(\text{aaabadaabaaa} \) and the pattern is \(\text{aabaaa} \).

R-9.3. Repeat the previous problem for the Boyer–Moore pattern-matching algorithm.

R-9.4. Repeat the previous problem for the Knuth–Morris–Pratt pattern-matching algorithm.

R-9.5. Compute a table representing the last occurrence function used in the Boyer–Moore pattern-matching algorithm for the pattern string

"the quick brown fox jumped over a lazy cat"

assuming the following alphabet (which starts with the space character):

\[\Sigma = \{\text{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z}\} \]

R-9.8. Draw a standard trie for the following set of strings:

\{abab, baba, cccccc, bbaaaa, caa, bbaacc, cbcc, cbca\}.

R-9.10. Draw the compact representation of the suffix trie for the string “minimize minime”.

C-9.5. Say that a pattern \(P \) of length \(m \) is a circular substring of a text \(T \) of length \(n \) if there is an index \(0 \leq i < m \) such that \(P = T[n - m + i..n - 1] + T[0..i - 1] \); that is, if \(P \) is a substring of \(T \) or \(P \) is equal to the concatenation of a suffix of \(T \) and a prefix of \(T \). Give an \(O(n + m) \) time algorithm for determining whether \(P \) is a circular substring of \(T \).
Additional Practice Questions

1. For each of the following patterns, compute the failure array, the last occurrence function, and the good suffix array.

 (a) \(P = ababba \)

 (b) \(P = abcdefg \)

 (c) \(P = mississippi \)