Key Concepts

- **Compression** takes a source text S and encodes it into a coded text C.
- The goal of compression is to minimize $|C|$, and this can be measured by the compression ratio.
- **Lossless** compression occurs when $\text{DECODE} (\text{ENCODE}(S)) = S$, and **lossy** compression occurs otherwise.
- **Huffman coding** uses character frequencies to build a variable-length code. Characters that occur more often get a shorter encoding.
- **Run-length encoding** encodes runs of identical characters by storing the run length. However, compression is only possible when runs in the string are of length ≥ 6 characters.
- **Lempel–Ziv–Welch coding** is similar to Huffman coding, but it considers frequent substrings instead of frequent characters.
 - The encoder reads a substring x, then adds xc to an adaptive dictionary (where c is the character following x)
 - The decoder reads two substrings x and y, then adds xc to an adaptive dictionary (where $c = y[0]$)
- **Text transforms** allow us to make a source text more compressible by rearranging its characters.
 - The **move-to-front transform** rearranges the source alphabet, Σ_S, and converts source characters to their index in the alphabet. Recently-seen characters have a smaller index value.
 - The **Burrows–Wheeler transform** rearranges the characters in the source text.
 - The encoder generates all cyclic shifts of S, sorts these shifts lexicographically, then returns the trailing characters of each shift as C
 - The decoder rebuilds the cyclic shifts and constructs S one character at a time directly from C
- Many real-world compression algorithms use a combination of the above techniques.
 - A typical encoding process may be $\text{BWT} \rightarrow \text{MTF} \rightarrow \text{RLE} \rightarrow \text{encoder}$
 - The decoding process is simply the inverse of these steps

Suggested Readings

- **CLRS**: 16.3 (Huffman codes)
- **Goodrich/Tamassia**: 9.3 (Text Compression)
Practice Questions

CLRS
16.3-2. Prove that a binary tree that is not full cannot correspond to an optimal prefix-free code.

16.3-3. What is an optimal Huffman code for the following set of frequencies, based on the first 8 Fibonacci numbers?
 a:1 b:1 c:2 d:3 e:5 f:8 g:13 h:21
 Can you generalize your answer to find the optimal code when the frequencies are the first n Fibonacci numbers?

16.3-5. Prove that if we order the characters in an alphabet so that their frequencies are monotonically decreasing, then there exists an optimal code whose codeword lengths are monotonically increasing.

16.3-7. Generalize Huffman’s algorithm to ternary codewords (i.e., codewords using the symbols 0, 1, and 2), and prove that it yields optimal ternary codes.

16.3-9. Show that no compression scheme can expect to compress a file of randomly chosen 8-bit characters by even a single bit.
 (Hint: Compare the number of possible files with the number of possible encoded files.)

Goodrich/Tamassia
R-9.12. Draw the frequency table and Huffman tree for the following string:
 “dogs do not spot hot pots or cats”.

C-9.20. Suppose A, B, and C are three integer arrays representing the ASCII or Unicode values of three character strings, each of size n. Given an arbitrary integer x, design an $O(n^2 \log(n))$ time algorithm to determine if there exist numbers $a \in A$, $b \in B$, and $c \in C$ such that $x = a + b + c$.

C-9.21. Give an $O(n^2)$ time algorithm for the previous problem.

Additional Practice Questions

1. (a) Encode the string TIN TIPTIP using Lempel–Ziv encoding. Assume we are using the standard ASCII character set (0–127) for our alphabet Σ.
 (b) Decode the sequence of numbers [66 65 68 65 128 132 129] which has been obtained from Lempel–Ziv encoding. Assume we are using the standard ASCII character set (0–127) for our alphabet Σ.

2. Show the result of encoding the string ONDON$ using:
 (a) The Burrows–Wheeler transform, where characters are ordered $\$ < D < N < O.
 (b) Move-to-front encoding, where the initial dictionary is
 $\begin{array}{cccc}
 0 & 1 & 2 & 3 \\
 \$ & D & N & O \\
 \end{array}$

3. If the Burrows–Wheeler transform outputs the string $E \uparrow \uparrow N \ R \ O \ D \ Y \ A \ O \ \$ \ U \ E$, then what was the original string?
 (Note: The original string ends with $\$ and you may assume that the space character \uparrow comes after the character Z.)