Problem 1 - Heap Insert and Delete

Insert 17, then 8 on the heap below. Then perform delete-max on the original heap.

(Same as Problem 4 on Tutorial 1)

Problem 2 - Heapsort

Perform heapsort on the following array:

Problem 3 - Quickselect

Perform QuickSelect to find the 3rd smallest element in this unsorted array:

\[A = [8, 17, 10, 1, 6, 20, 2, 9, 7, 13] \]
Problem 4 - Merging Lists

Given \(k \) sorted lists, where the combination of the \(k \) lists has \(n \) elements in total, give an \(O(n \times \log(k)) \) algorithm to combine the \(k \) sorted lists into a single sorted list.

Problem 5 - Linear Time Range Matching

Consider a list of integers \((a_1, a_2, a_3, ..., a_n)\) such that \(a_i < a_j \) if \(i < j \) for \(1 \leq i \leq j \leq n \). Also, given a string \(S \) of length \(k \), let \(S_i \) be the \(i-th \) suffix of \(S \) starting from the last character (so \(S_1 \) would be the last character of \(S \) and \(S_k \) would be the entire string). Let \(\text{weight}(S_i) = \) the sum of the numerical ascii values of all the characters in \(S_i \).

a) Write pseudocode for a \(\Theta(n + k) \) algorithm that takes as input the list of integers \((a_1, a_2, a_3, ..., a_n)\), the string \(S \), and a value \(\delta \in \mathbb{Z}^+ \) and finds all \(a_i \) that lie within \(\delta \) of some \(\text{weight}(S_j) \) for all \(1 \leq j \leq k \). The algorithm must use only constant additional space. Assume that reporting each \(a_i \) does not take additional space.

b) Suppose instead of just reporting each \(a_i \), we want to write an algorithm that constructs a list of tuples \((a_i, S_j)\) which are all pairs of \(a_i \) within \(\delta \in \mathbb{Z}^+ \) of \(\text{weight}(S_j) \) for all \(1 \leq j \leq k \). Relaxing the constant space constraint, does such an algorithm run in \(\Theta(n + k) \) time in the worst case? If not, derive the worst case run time of the algorithm.