1. Consider the problem of sorting an array $A = (a_1, a_2, \ldots, a_n)$ of elements with multiplicities (m_1, m_2, \ldots, m_k). That is, A is made up of k distinct elements (y_1, y_2, \ldots, y_k), where y_i occurs m_i times in A. Prove that any algorithm in the comparison model requires $\Omega(n \log n - \sum_{i=1}^{k} m_i \log m_i)$ comparisons to sort A.

2. We have an array A of n non-negative integers such that each integer is less than k. Give an $O(n + k)$ time preprocessing algorithm such that queries of the form “how many integers are there in A that are in the range $[a, b]$?” can be answered in $O(1)$ time. Note that a and b are not fixed; they are parameters given to the query algorithm.

3. Suppose that we have an unsorted array A of n non-negative integers, where $A[i] < n^c$, for some fixed constant c. Describe how to sort A in $O(n)$ time.