1. Consider the AVL tree shown below and perform the following operations: insert 20, delete 32 and delete 96.

2. In this problem, we will show that deleting a single node in an AVL-tree of height h might require $\Theta(h)$ rotations. First, we define a family $(T_h)_{h \geq -1}$ recursively in the following manner: T_{-1} is empty and T_0 is a single node. To form T_h, we start with a single node and take a copy of T_{h-2} and a copy of T_{h-1} as the left and the right children of the root, respectively.

 (a) For $h \geq 0$, what is the height of T_h? Prove your claim.

 (b) Prove that for $h \geq 0$, T_h satisfies the height requirements of an AVL tree.

 (c) On T_3, what are the leaves which require $\lfloor 3/2 \rfloor = 1$ rotation upon deletion? Pick one and show the resulting tree.

 (d) Same question with T_4, but now with $\lfloor 4/2 \rfloor = 2$ rotations.

 (e) Prove by induction that the above construction of T_h results in trees for which there is a node that requires $\lfloor h/2 \rfloor$ rotations upon deletion.

3. Let L be a list of n elements. Give an sequence of m search such that: (a) the average cost of a search under the MTF heuristic is $O(1)$ and (b) the average cost of a search under the Transpose heuristic is $O(n)$.