Problem 1 [6+6=12 marks]

- In this course, the height of an empty tree is -1.
- Some students missed the case where the tree is empty.
- Some students did not provide pseudocodes.
- Some students did not provide a justification of correctness.

Problem 2 [2+6+5=13 marks]

b)
- Some students did not use the property of AVL tree.
- Some students did not take the other child of $T_{\ell-(i+1)}$ into consideration in the inductive step.

c) Some students said the height of an AVL tree with n nodes is $\log n$, which is not necessarily true; they should say the height is in $\Omega(\log n)$ instead.

Problem 3 [4+1+3+3+4=15 marks]

a) Some students did not use the other part of the given inequality $\text{balance} \geq \frac{1}{2}$ to prove for leftDescendants.

c) Some students overcomplicated the problem by trying to prove for exactly n; proving for at most n is enough.

e)
- Some students did not use the property that $H(n)$ is non-decreasing inside their justification.
- Some students did not give an upper bound for k.

Problem 4 [4+4 = 8 marks]

b)
- Some students did not justify how they get $k = \sqrt{n}$ and why it minimizes the run-time.
- Some students forgot to validate that \sqrt{n} is actually the minimum point by either checking whether the second derivative is positive or checking whether the first derivative changes from negative to positive at $k = \sqrt{n}$.
Problem 5 [6+6=12 marks]
Generally well done.

Problem 6 [2+3+4+5=14 marks]

a) Some students did not mention that the coin flips are independent.

d)
 • Some students did not justify why $E(V_i) \leq 1$ and $E(V_i) \leq np^i$.
 • Some students split the sum incorrectly.