CS 240 — Data Structures and Data Management

Module 2: Priority Queues

Leili Rafiee Sevyeri Eric Schost
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Spring 2023

version 2023-05-29 13:55

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023 1/25

Outline

e Priority Queues
@ Abstract Data Types
o ADT Priority Queue
@ Binary Heaps
@ Operations in Binary Heaps
@ PQ-sort and Heapsort
@ Towards the Selection Problem

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023

Outline

© Priority Queues
@ Abstract Data Types

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

Abstract Data Types

Abstract Data Type (ADT): A description of information and a
collection of operations on that information.

The information is accessed only through the operations.

We can have various realizations of an ADT, which specify:
@ How the information is stored (data structure)

@ How the operations are performed (algorithms)

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023 2/25

Stack ADT

Stack: an ADT consisting of a collection of items with operations:
@ push: inserting an item

@ pop: removing (and typically returning) the most recently inserted
item

Items are removed in LIFO (/ast-in first-out) order.
Items enter the stack at the top and are removed from the top.
We can have extra operations: size, isEmpty, and top

Applications: Addresses of recently visited web sites, procedure calls

Realizations of Stack ADT
@ using arrays

@ using linked lists

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023 3/25

Queue ADT

Queue: an ADT consisting of a collection of items with operations:
@ enqueue: inserting an item

@ dequeue: removing (and typically returning) the least recently
inserted item

Items are removed in FIFO (first-in first-out) order.
Items enter the queue at the rear and are removed from the front.
We can have extra operations: size, isEmpty, and front

Applications: Waiting lines, printer queues

Realizations of Queue ADT
@ using (circular) arrays

@ using linked lists

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023 4/25

Outline

© Priority Queues

o ADT Priority Queue

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

Priority Queue ADT

Priority Queue: An ADT consisting of a collection of items (each having
a priority) with operations

@ insert: inserting an item tagged with a priority

@ deleteMax: removing and returning the item of highest priority

deleteMax is also called extractMax or getmax.
The priority is also called key.

The above definition is for a maximum-oriented priority queue. A
minimum-oriented priority queue is defined in the natural way, replacing
operation deleteMax by deleteMin,

Applications: typical “todo” list, simulation systems, sorting

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023 5/25

Using a Priority Queue to Sort

PQ-Sort(A[0..n — 1])

1 initialize PQ to an empty priority queue
2 for i<~ 0ton—1do

3. PQ.insert(A[f])

4 for i <~ n—1 down to 0 do

5 Ali] + PQ.deleteMax()

@ Note: Run-time depends on how we implement the priority queue.

@ Sometimes written as: O(initialization + n - insert + n - deleteMax)

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023 6 /25

Realizations of Priority Queues

Realization 1: unsorted arrays

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

Realizations of Priority Queues

Realization 1: unsorted arrays
e insert: O(1)
e deleteMax: O(n)

Note: We assume dynamic arrays, i.e., expand by doubling as needed.
(Amortized over all insertions this takes O(1) extra time.)

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023 7/25

Realizations of Priority Queues

Realization 1: unsorted arrays
e insert: O(1)
e deleteMax: O(n)

Note: We assume dynamic arrays, i.e., expand by doubling as needed.
(Amortized over all insertions this takes O(1) extra time.)

Using unsorted linked lists is identical.
PQ-sort with this realization yields selection sort.

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023 7/25

Realizations of Priority Queues

Realization 1: unsorted arrays
e insert: O(1)
e deleteMax: O(n)
Note: We assume dynamic arrays, i.e., expand by doubling as needed.

(Amortized over all insertions this takes O(1) extra time.)

Using unsorted linked lists is identical.
PQ-sort with this realization yields selection sort.

Realization 2: sorted arrays

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023 7/25

Realizations of Priority Queues

Realization 1: unsorted arrays
e insert: O(1)
e deleteMax: O(n)

Note: We assume dynamic arrays, i.e., expand by doubling as needed.
(Amortized over all insertions this takes O(1) extra time.)

Using unsorted linked lists is identical.
PQ-sort with this realization yields selection sort.

Realization 2: sorted arrays
e insert: O(n)
o deleteMax: O(1)

Using sorted linked lists is identical.
PQ-sort with this realization yields insertion sort.

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023 7/25

Outline

© Priority Queues

@ Binary Heaps

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

Realization 3: Heaps

A (binary) heap is a certain type of binary tree.

You should know:
o A binary tree is either
» empty, or
» consists of three parts:
a node and two binary trees (left subtree and right subtree).

e Terminology: root, leaf, parent, child, level, sibling, ancestor,
descendant, etc.

@ Any binary tree with n nodes has height at least
log(n+ 1) — 1 € Q(log n).

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023 8 /25

Example Heap

In our examples we only show the priorities, and we show them directly in
the node. A more accurate picture would be @ ---------- >(priority = 50, <other info>)

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023 9 /25

Heaps — Definition

A heap is a binary tree with the following two properties:

@ Structural Property: All the levels of a heap are completely filled,

except (possibly) for the last level. The filled items in the last level
are left-justified.

@ Heap-order Property: For any node i, the key of the parent of / is
larger than or equal to key of i.

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023 10 / 25

Heaps — Definition

A heap is a binary tree with the following two properties:

@ Structural Property: All the levels of a heap are completely filled,

except (possibly) for the last level. The filled items in the last level
are left-justified.

@ Heap-order Property: For any node i, the key of the parent of / is
larger than or equal to key of i.

The full name for this is max-oriented binary heap.

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023 10 / 25

Heaps — Definition

A heap is a binary tree with the following two properties:

@ Structural Property: All the levels of a heap are completely filled,

except (possibly) for the last level. The filled items in the last level
are left-justified.

@ Heap-order Property: For any node i, the key of the parent of / is
larger than or equal to key of i.

The full name for this is max-oriented binary heap.

Lemma: The height of a heap with n nodes is ©(log n).

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023 10 / 25

Storing Heaps in Arrays

Heaps should not be stored as binary trees!

Let H be a heap of nitems and let A be an array of size n. Store root in
A[0] and continue with elements level-by-level from top to bottom, in each
level left-to-right.

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023 11 /25

Storing Heaps in Arrays

Heaps should not be stored as binary trees!

Let H be a heap of nitems and let A be an array of size n. Store root in
A[0] and continue with elements level-by-level from top to bottom, in each
level left-to-right.

5 6 7 8

A (23) (26) A8l g o9 Taa (27 15 T8 1072326 |

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023 11 /25

Heaps in Arrays — Navigation

It is easy to navigate the heap using this array representation:

@ the root node is at index 0
(We use “node” and “index” interchangeably in this implementation.)

the /ast node is n — 1 (where n is the size)
the left child of node i (if it exists) is node 2i + 1
the right child of node i (if it exists) is node 2i + 2

the parent of node i (if it exists) is node | 5!

these nodes exist if the index falls in the range {0,...,n—1}

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023 12 /25

Heaps in Arrays — Navigation

It is easy to navigate the heap using this array representation:

@ the root node is at index 0
(We use “node” and “index” interchangeably in this implementation.)

the /ast node is n — 1 (where n is the size)
the left child of node i (if it exists) is node 2i + 1
the right child of node i (if it exists) is node 2i + 2

the parent of node i (if it exists) is node | 5!

these nodes exist if the index falls in the range {0,...,n—1}

We should hide implementation details using helper-functions!
e functions root(), last(), parent(i), etc.

Some of these helper-functions need to know n (but we omit this in the
code for simplicity).

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023 12 /25

Outline

© Priority Queues

@ Operations in Binary Heaps

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

Insert in Heaps

@ Place the new key at the first free leaf

@ The heap-order property might be violated: perform a fix-up:

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023 13 /25

Insert in Heaps

@ Place the new key at the first free leaf

@ The heap-order property might be violated: perform a fix-up:

fix-up(A, i)

i: an index corresponding to a node of the heap

1. while parent(i) exists and A[parent(i)].key < A[i].key do
2. swap A[i] and A[parent(i)]

3. i < parent(i)

The new item “bubbles up” until it reaches its correct place in the heap.

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023 13 /25

Insert in Heaps

@ Place the new key at the first free leaf

@ The heap-order property might be violated: perform a fix-up:

fix-up(A, i)

i: an index corresponding to a node of the heap

1. while parent(i) exists and A[parent(i)].key < A[i].key do
2. swap A[i] and A[parent(i)]

3. i < parent(i)

The new item “bubbles up” until it reaches its correct place in the heap.

Time: O(height of heap) = O(log n).

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023 13 /25

fix-up example

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

fix-up example

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

fix-up example

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

fix-up example

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

deleteMax in Heaps

@ The maximum item of a heap is just the root node.
e We replace root by the last leaf (last leaf is taken out).

@ The heap-order property might be violated: perform a fix-down:

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023 15 /25

deleteMax in Heaps

@ The maximum item of a heap is just the root node.
e We replace root by the last leaf (last leaf is taken out).

@ The heap-order property might be violated: perform a fix-down:

fix-down(A, i, n)

A: an array that stores a heap of size n

i: an index corresponding to a node of the heap

1 while / is not a leaf do

2 J <« left child of i // Find the child with the larger key
3. if (i has right child and A[right child of i].key > A[j].key)

4. j < right child of i

5 if A[i].key > A[j].key break

6 swap A[j] and A[/]

7 i+ J

Time: O(height of heap) = O(log n).

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023 15 /25

deleteMax example

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

deleteMax example

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

deleteMax example

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

deleteMax example

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

Priority Queue Realization Using Heaps

@ Store items in array A and globally keep track of size

insert(x)

1. increase size

2 £+ last()

3. All] + x

4 fix-up(A, £)

deleteMax()

1. £+« last()

2. swap Alroot()] and A[{]

3. decrease size

4. fix-down(A, root(), size)

5. return A[{]

insert and deleteMax: O(log n) time

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023

17 / 25

Outline

© Priority Queues

@ PQ-sort and Heapsort

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

Sorting using heaps

@ Recall: Any priority queue can be used to sort in time

OC(initialization + n - insert + n - deleteMax)

@ Using the binary-heaps implementation of PQs, we obtain:

PQsortWithHeaps(A)

1. initialize H to an empty heap
2 fori< O0ton—1do

3. H.insert(A[i])

4 for i < n—1 down to 0 do
5 Ali] « H.deleteMax()

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023

18 / 25

Sorting using heaps

@ Recall: Any priority queue can be used to sort in time
OC(initialization + n - insert + n - deleteMax)

@ Using the binary-heaps implementation of PQs, we obtain:

PQsortWithHeaps(A)

1. initialize H to an empty heap
2. for i< 0ton—1do

3. H.insert(A[i])

4, for i <~ n—1 down to 0 do
5. Ali] « H.deleteMax()

@ both operations run in O(log n) time for heaps

~» PQ-Sort using heaps takes O(nlogn) time.

@ Can improve this with two simple tricks — Heapsort
@ Heaps can be built faster if we know all input in advance.
@ Can use the same array for input and heap. ~» O(1) auxiliary space!

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023 18 /25

Building Heaps with Fix-up

Problem: Given n items all at once (in A[0---n — 1]) build a heap
containing all of them.

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023 19 /25

Building Heaps with Fix-up

Problem: Given n items all at once (in A[0---n — 1]) build a heap
containing all of them.

Solution 1: Start with an empty heap and insert items one at a time:

simpleHeapBuilding(A)

A: an array

1. initialize H as an empty heap
2. for i<+ 0to Asize() — 1 do
3. H.insert(A[i])

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023 19 /25

Building Heaps with Fix-up

Problem: Given n items all at once (in A[0---n — 1]) build a heap
containing all of them.

Solution 1: Start with an empty heap and insert items one at a time:

simpleHeapBuilding(A)

A: an array

1. initialize H as an empty heap
2. for i<+ 0to Asize() — 1 do
3. H.insert(A[i])

This corresponds to doing fix-ups
Worst-case running time: ©(nlogn).

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023 19 /25

Building Heaps with Fix-down

Problem: Given n items all at once (in A[0---n — 1]) build a heap
containing all of them.

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023 20 / 25

Building Heaps with Fix-down

Problem: Given n items all at once (in A[0---n — 1]) build a heap
containing all of them.

Solution 2: Using fix-downs instead:

heapify(A)
A: an array
1. n+ Asize()
2. for i + parent(last()) downto root() do
3. fix-down(A, i, n)
Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

Spring 2023 20 / 25

Building Heaps with Fix-down

Problem: Given n items all at once (in A[0---n — 1]) build a heap
containing all of them.

Solution 2: Using fix-downs instead:

heapify(A)

A: an array

1. n+ Asize()

2. for i + parent(last()) downto root() do
3. fix-down(A, i, n)

A careful analysis yields a worst-case complexity of ©(n).
A heap can be built in linear time.

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023 20 / 25

heapify example

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

heapify example

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

heapify example

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

heapify example

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

heapify example

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

heapify example

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

heapify example

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

heapify example

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

heapify example

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

heapify example

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

Efficient sorting with heaps

o ldea: PQ-sort with heaps.

@ O(1) auxiliary space: Use same input-array A for storing heap.

HeapSort(A, n)

// heapify

n <+ Asize()

for i < parent(/ast()) downto 0 do
fix-down(A, i, n)

o=

// repeatedly find maximum

while n > 1
// 'delete’ maximum by moving to end and decreasing n
swap items at A[root()] and A[last()]
decrease n

10. fix-down(A, root(), n)

© ® N>

The for-loop takes ©(n) time and the while-loop takes O(nlog n) time.

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023 22 /25

Heapsort example

Continue with the example from heapify:

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023 23 /25

Heapsort example

Continue with the example from heapify:

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

Heapsort example

Continue with the example from heapify:

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

Heapsort example

Continue with the example from heapify:

-y

RN

. / N
70 80
\ VRN 7

~_ ~_

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

Heapsort example

Continue with the example from heapify:

PN RN

/ Ny N
70 1+ 80
\ [N /

~_ ~_

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

Heapsort example

Continue with the example from heapify:

-~

RN

N, \
70 1+ 80
\ [N /

~_ ~_

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

Heapsort example

Continue with the example from heapify:

’

PN RN

/ Ny N
70 1+ 80
\ [N /

~_ ~_

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

Heapsort example

Continue with the example from heapify:

-~

RN

N, \
70 1+ 80
\ [N /

~_ ~_

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

Heapsort example

Continue with the example from heapify:

’

-~

-, ST

/ Ny N
70 1+ 80
\ [N /

~_ ~_

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

Heapsort example

Continue with the example from heapify:

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

Heapsort example

Continue with the example from heapify:

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

Heapsort example

Continue with the example from heapify:

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

Heapsort example

Continue with the example from heapify:

- ’ N -
e N TS
/ A /
30 40
\ 4 \ 4
r-< ~-=7
/ \

s s

/ Ny N

700 80

\ / \ /

~_- ~_-

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

Heapsort example

Continue with the example from heapify:

’ N
7/ A
I/‘\\/ I\/‘\\
30 (40
\ \
r-< ~-=7
/ \
-~ -~
. N7 N
700 80
\ / \ /
~_~- ~_~-

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

e
ey
20
\ /
PN
SIS
/
50)
o

Heapsort example

Continue with the example from heapify:

// \\
/”\\k_/ \\//"‘\
110 | 120
N / \
DEGIN Jo_ A~
_ // \\ _ _ // \\ _
LT~y T LT~y T
/ A / N / N / N
| | | |
130 40 /50 {60
rox <~_~ <~_~- <~_~
- / \—
ne N ne N
70 80
\ VAN ’

The array (i.e., the heap in level-by-level order) is now in sorted order.

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023 23 /25

Heap summary

@ Binary heap: A binary tree that satisfies structural property and
heap-order property.
@ Heaps are one possible realization of ADT PriorityQueue:

> insert takes time O(log n)
> deleteMax takes time O(log n)
» Also supports findMax in time O(1)

@ A binary heap can be built in linear time.

e PQ-sort with binary heaps leads to a sorting algorithm with O(nlog n)
worst-case run-time (~» HeapSort)

@ We have seen here the max-oriented version of heaps (the maximum
priority is at the root).

@ There exists a symmetric min-oriented version that supports insert
and deleteMin with the same run-times.

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023 24 /25

Outline

© Priority Queues

@ Towards the Selection Problem

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2

Finding the smallest items

Problem: Find the kth smallest item in an array A of n distinct numbers
(k=0,...,n—1)

Solution 1: Sort A, then return A[k].

Complexity: ©(nlog n).

Solution 2: Make k 4 1 passes through the array, deleting the minimum
number each time.

Complexity: ©(kn).

Solution 3: Scan the array and maintain the k + 1 smallest numbers seen
so far in a max-heap

Complexity: ©(nlog k).

Solution 4: Create a min-heap with heapify(A). Call deleteMin(A) k + 1

times.
Complexity: ©(n + k log n).

Rafiee Sevyeri, Schost (CS-UW) CS240 — Module 2 Spring 2023 25 /25

	Priority Queues
	Abstract Data Types
	Abstract Data Types
	Stack ADT
	Queue ADT

	ADT Priority Queue
	Priority Queue ADT
	Using a Priority Queue to Sort
	Realizations of Priority Queues

	Binary Heaps
	Realization 3: Heaps
	Example Heap
	Heaps – Definition
	Storing Heaps in Arrays
	Heaps in Arrays – Navigation

	Operations in Binary Heaps
	Insert in Heaps
	fix-up example
	deleteMax in Heaps
	deleteMax example
	Priority Queue Realization Using Heaps

	PQ-sort and Heapsort
	Sorting using heaps
	Building Heaps with Fix-up
	Building Heaps with Fix-down
	heapify example
	Efficient sorting with heaps
	Heapsort example
	Heap summary

	Towards the Selection Problem
	Finding the smallest items

