CS 240 — Data Structures and Data Management

Module 8: Range-Searching in Dictionaries for Points

0. Veksler

Based on lecture notes by many previous ¢s240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Summer 2023

Outline

= Range-Searching in Dictionaries for Points
= Range Trees
= Conclusion

Outline

= Range-Searching in Dictionaries for Points
= Range Trees

Towards Range Trees

= Quadtrees and kd-trees
" intuitive and simple
* but both may be slow for range searches
= guadtrees are also potentially wasteful in space

= Consider BST/AVL trees

= efficient for one-dimensional dictionaries, if balanced
= range search is also efficient
= can we use ideas from BST/AVL trees for multi dimensional dictionaries?

" First let us consider range search in BST

BST Range Search example

BST::RangeSearch-recursive(T,28,43)

28 43 @

/ (5

@ @ ’\ @
@@ Q @) ®

olololo

= blue node: recurse either to the left, or to the right, or both (according to the key value)
= boundary node, one or both subtrees may intersect range query

= red node: range search was not called on red node, but was called on its parent
= outside node, subtree does not intersect range query

= green node : all the keys in the subtree are in the range
= inside node, subtree completely inside range query

BST Range Search example

BST::RangeSearch-recursive(T,28,43)

28 43

2 AN

© @ e © ©

& (5 @

blue node: recurse either to the left, or to the right, or both (according to the key value)

= boundary node, one or both subtrees may intersect range query

red node: range search was not called on red node, but was called on its parent

= outside node, subtree does not intersect range query

green node : all the keys in the subtree are in the range

= inside node, subtree completely inside range query

BST Range Search example

BST::RangeSearch-recursive(T,28,43)

= blue node: recurse either to the left, or to the right, or both (according to the key value)
= boundary node, one or both subtrees may intersect range query

= red node: range search was not called on red node, but was called on its parent
= outside node, subtree does not intersect range query

= green node : all the keys in the subtree are in the range
= inside node, subtree completely inside range query

BST Range Search example

BST::RangeSearch-recursive(T,28,43)

= blue node: recurse either to the left, or to the right, or both (according to the key value)
= boundary node, one or both subtrees may intersect range query

= red node: range search was not called on red node, but was called on its parent
= outside node, subtree does not intersect range query

= green node : all the keys in the subtree are in the range
= inside node, subtree completely inside range query

BST Range Search example

BST::RangeSearch-recursive(T,28,43)

28 43

AN

@ > © ®
BHE 6 @

blue node: recurse either to the left, or to the right, or both (according to the key value)

= boundary node, one or both subtrees may intersect range query

red node: range search was not called on red node, but was called on its parent

= outside node, subtree does not intersect range query

green node : all the keys in the subtree are in the range

= inside node, subtree completely inside range query

BST Range Search example

BST::RangeSearch-recursive(T,28,43)

28 43

@3@@.0 ‘ .A‘ \A

= blue node: recurse either to the left, or to the right, or both (according to the key value)
= boundary node, one or both subtrees may intersect range query

= red node: range search was not called on red node, but was called on its parent
= outside node, subtree does not intersect range query

= green node : all the keys in the subtree are in the range
= inside node, subtree completely inside range query

BST Range Search example

BST::RangeSearch-recursive(T,28,43)

28 43

3T T

= blue node: recurse either to the left, or to the right, or both (according to the key value)
= boundary node, one or both subtrees may intersect range query

= red node: range search was not called on red node, but was called on its parent
= outside node, subtree does not intersect range query

= green node : all the keys in the subtree are in the range
= inside node, subtree completely inside range query

BST Range Search example

BST::RangeSearch-recursive(T,28,43)

(57)

@‘Q O
@@C

= blue node: recurse either to the left, or to the right, or both (according to the key value)
= boundary node, one or both subtrees may intersect range query

= red node: range search was not called on red node, but was called on its parent
= outside node, subtree does not intersect range query

= green node : all the keys in the subtree are in the range
= inside node, subtree completely inside range query

BST Range Search example

BST::RangeSearch-recursive(T,28,43)

28

(57)

@@

= blue node: recurse either to the left, or to the right, or both (according to the key value)
= boundary node, one or both subtrees may intersect range query

= red node: range search was not called on red node, but was called on its parent
= outside node, subtree does not intersect range query

= green node : all the keys in the subtree are in the range
= inside node, subtree completely inside range query

BST Range Search example

BST::RangeSearch-recursive(T,28,43)

28

(5

c
® @ @
®®O® ©

= blue node: recurse either to the left, or to the right, or both (according to the key value)
= boundary node, one or both subtrees may intersect range query

= red node: range search was not called on red node, but was called on its parent
= outside node, subtree does not intersect range query

= green node : all the keys in the subtree are in the range
= inside node, subtree completely inside range query

BST Range Search example

BST::RangeSearch-recursive(T,28,43)

28

(5

c
® @ @
®®O® ©

= blue node: recurse either to the left, or to the right, or both (according to the key value)
= boundary node, one or both subtrees may intersect range query

= red node: range search was not called on red node, but was called on its parent
= outside node, subtree does not intersect range query

= green node : all the keys in the subtree are in the range
= inside node, subtree completely inside range query

BST Range Search example

BST::RangeSearch-recursive(T,28,43)

= blue node: recurse either to the left, or to the right, or both (according to the key value)
= boundary node, one or both subtrees may intersect range query

= red node: range search was not called on red node, but was called on its parent
= outside node, subtree does not intersect range query

= green node : all the keys in the subtree are in the range
= inside node, subtree completely inside range query

BST Range Search

BST::RangeSearch-recursive(r « root, k1, k2)
r: root of a binary search tree, k1, k»: search keys
Returns keys in subtree at r that are in range [k, k2]
if r = NIL then return
if k1 < r.key < k; then
L « BST::RangeSearch-recursive(r.lef't, k1, k2)
R < BST::RangeSearch-recursive(l .right, k1, k2)
return L U {r.key} U R
if r.key < ki1 then
return BST::RangeSearch-recusive(r.right, k1, k2)
if r.key > k; then
return BST-RangeSearch-recursive(r.lef't, k1, kz)

= Keys returned in sorted order

Modified BST Range Search

Search for left boundary k, : this gives path P,
Search for right boundary k, : this gives path P,

Boundary (blue nodes) are exactly all the nodes on paths P;and P>
Nodes are partitioned into three groups: boundary, outside, inside

Modified BST Range Search

= Boundary nodes: nodes in P1 and P;
= check if boundary nodes are in the search range
= Qutside nodes: nodes that are left of Py or right of P>
= outside nodes are not in the search range
= range search is never called on an outside node
" |nside nodes: nodes that are right of P, and left of P>
= we will stop the search at the topmost inside node
= all descendants of such node are in the range, just report them without search

= this is not more efficient for BST range search, but will be efficient when we
move to 2D search in range trees

Modified BST Range Search Analysis

Assume balanced BST 28 43 @
Running time consists of

@

o 5
& o & ®

search for path P,

= O(logn)
search for path P, is O(logn
P 2 (logn) @ (3
= O(logn)

check if boundary nodes in the range
= (0(1) at each boundary node, there are O(logn) of them, O(logn) total time
spend O(1) at each topmost inside node

= since each topmost inside node is a child of boundary node, there are at
most O (logn) topmost inside nodes, so total time O (logn)

report descendants in subtrees of all topmost inside nodes

= topmost nodes are disjoint, so #descendants for inside topmost nodes is at

most s, output size
P #descendantsof v < s

topmost inside
node v

Total time O(s + logn)

How to Find Top Inside Node

= p isatopinside node if
= pisnotisin Pior Py
= parent of visin Pqor P, (but not both)
= jf parentisin Py, then v is right child
= if parentisin Py, then v is left child

ki < key(u) < k,

b ———————)

k, <key(u) < everything < key(w) < k,
= Thus for each top inside node can report all descendants, no need for search

= BST range search does not become not faster overall, but top inside nodes
are important for 2d range search efficiency

= alsoimportant if need to just count the number of points in the search range

Modified BST Range Search Summary
T

= Search for ki: this gives left boundary path P;
= Search for k;: this gives right boundary path P,

® Find all topmost inside nodes ‘
= notinPiorP;

= |eft children of nodes in P>

® right children of nodes in P;

* |nside node (which is not a topmost inside) is in a subtree of some topmost inside node
= Set of inside nodes = union disjoint subtrees rooted at topmost inside nodes
= To output nodes in the search range

= test each nodein P1, P; and report if in range
= go over all topmost inside nodes and report all nodes in their subtree

2D Range Tree Motivation

Have a set of 2D points
. S ={(1,5),(2,7),(3,1),(4,4),(5,13),(6,15)(7,11),(8,10), (9,6), (10,12),(11,8),(12,14),(13,2),(14,9), (15,16), (16,3)}

Example of 2D range search
BST-RangeSearch(T, 5,14,5,9)
= find all pointswith5 < x <14and5 <y <9
Construct BST with x-coordinate key
= recall that points are in general positon, so all x-keys are distinct

= forany (xq,y1) and (x3,Y,) in our set of points, x; # x,

= can search efficiently based only on x-coordinate

2D Range Tree Motivation

* Consider 2D range search BST-RangeSearch(T, 5,14,5,9)
= First perform BST-RangeSearch(T, 5, 14)

= |et A be the set of nodes BST-RangeSearch(T, 5, 14) returns

= A={10,12),(6,15),(5,13),(14,9),(8,10),(7,11),(9,6),(12,14),(11,8), (13,2)}
» et B be the set of nodes BST-RangeSearch(T, 5, 14,5,9) should return

= BCA
= Need to go over all nodes in A and check if their y-coordinate is in valid range, O (|4])

= could be very inefficient

= for example, |A| can be, say ©(n) and |B| could be 0(1)

» 0(n), as bad as exhaustive search and worse than kd-trees search, O(|B| + vn)

2D Range Tree Motivation

= Consider 2D range search BST-RangeSearch(T, 5, 14,5, 9)
= First perform only partial BST-RangeSearch(T, 5, 14)

» find boundary and topmost inside nodes, takes O (logn) time

= Next

= for boundary nodes, check if both x and y coordinates are in the range, takes O (logn)
time as there are O (logn) boundary nodes

= inside nodes are stored in O (log n) subtrees, with a topmost inside node as a root of
each subtree

= if we could search these subtrees, time would be very efficient
= however these subtrees do not support efficient search by y coordinate

2D Range Tree Motivation

= Need to search subtrees by y-coordinate, but they are x-coordinate based
= Brute-force solution

" create an associate balanced BST tree for each node v

» stores the same items as the main (primary) subtree rooted at node v

= but key is y-coordinate

Range Tree in ‘Full Glory’

~Primary tree

A

associated tree for
node (1,5)

€
3

associated tree for

_ node (12,14)
4,4 @ associated tree for

. node (8,10)
associated tree for node (4, 4)

2-dimensional Range Trees Full Definition

Primary tree T @
<D (1493

= Points S — {(X(), }’O); (xl; }’1); ey (xn—ly yn—l)}
= Range tree is a tree of trees (a multi-level data structure)

= Primary structure

= balanced BST T storing S and uses x-coordinates as keys
= assume T is balanced, so height is O (logn)

= Each node v of T stores an associated tree T(v), which is a balanced BST

"= let S(v) be all descendants of vin T, including v
= T(v) stores S(v) in BST, using y-coordinates as key

» note that v is not necessarily the root of T'(v)

Range search in 2D Range Tree Overview

= RangeTree::RangeSearch(T, x{, x5, V1, V>)
» RangeTree::RangeSearch(T, 5, 14,5, 9)
1. Perform modified BST-RangeSearch(T, 5, 14)
» find boundary and topmost inside nodes, but do not go through the inside subtrees

= modified version takes O (logn) time
= does not visit all the nodes in valid range for BST-RangeSearch(T, 5, 14)

2. Check if boundary nodes have valid x-coordinate and valid y-coordinate

3. For every topmost inside node v, search in associated tree BST::RangeSearch(T (v), 5, 9)

Range Tree Range Search Example Finished
x (0.1D% v
CIDN (1493
SOy (16,33

= RangeTree::RangeSearch(T, 5, 14 5 9)
= For every topmost inside node v, search in associated tree BST RangeSearch(T(v) 5,9)

BST- rangeSearch(T(B 10),5,9) BST- RangeSearch(T (12,14),5,9)

Range Tree Space Analysis

" Primary tree T uses O(n) space

= For each v, associated tree T (v) uses

O(|T(v)|) space & A A

= Space for all associated trees is in how many associate
trees appears?
e . o \ ® o0
®
ETU = @ + + ®+t@o+to+0= 0+ "+ "+ @+ " 1@
| ()l o0 ® Y ® ® ®
VET

7 #of ancestors of v }

VET
< clogn
< z clogn = cnlogn
vET

= Spaceis O(nlogn)
" in the worst case, have n/2 leaves at the last level, and
space needed is O(nlogn)

#of ancestors of v

Range Trees: Dictionary Operations

= Search(x,y)
= search by x coordinate in the primary tree T
= Insert(x,y)
= first, insert point by x-coordinate into the primary tree T

= then walk up to root and insert point by y-coordinate in all T (v) of
nodes v on path to root

= Delete
= analogous to insertion
= Problem
= want binary search trees to be balanced

= if we use AVL-trees, it makes insert/delete very slow
= rotation at v changes S(v) and hence requires re-build of T (v)

= instead of rotations, can allow certain imbalance, rebuild
entire subtree if violated

" no details

Range Trees: Range Search Runtime

*" Find boundary nodes in the primary tree
and check if keys are in the range

topmost inside
=7 nodes

= O(logn)
®" Find topmost inside nodes in primary tree Y
. 0(logn)
" For each topmost inside node v, perform inside subtr;s :jo not have any
range search for y-range in associate tree nodes in common

= (O(logn) topmost inside nodes
= |et sy be #items returned for the subtree of topmost node v

* running time for one search is O(logn + s,,)

z c(logn + sy)= z clogn + Z CSy

topmost inside topmost inside topmost inside
node v node v node v
0(log?n) <cs

= Time for range search in range tree: O (s + log?n)
= can make this even more efficient, but this is beyond the scope of the course

Range Trees: Higher Dimensions

= Range trees can be generalized to d -dimensional space

= space O(n (logn)¢™1)
= construction time O(n (log n)d)
" range search time O0(s + (logn)%)

= Note: d is considered to be a constant
= Space-time tradeoff compared to kd trees

Outline

= Range-Searching in Dictionaries for Points

= Conclusion

Range Search Data Structures Summary

= Quadtrees
= simple, easy to implement insert/delete (i.e. dynamic set of points)
= work well only if points evenly distributed
= wastes space for higher dimensions
= convention: points on split lines belong to the right/top side

= kd-trees
= |inear space
= range searchis O(s +/n)
= jnserts/deletes destroy balance and range search time
= fix with occasional rebuilt
= convention: points on split lines belong to the right/top side

= Range trees
= fastest range search O(s + log®n)

= wastes some space
= insert and delete destroy balance, but can fix this with occasional rebuilt

	Slide 1
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: Towards Range Trees
	Slide 5: BST::RangeSearch-recursiveopen paren cap T , ,, 28,, 43 close paren
	Slide 6: BST::RangeSearch-recursiveopen paren cap T , ,, 28,, 43 close paren
	Slide 7: BST::RangeSearch-recursiveopen paren cap T , ,, 28,, 43 close paren
	Slide 8: BST::RangeSearch-recursiveopen paren cap T , ,, 28,, 43 close paren
	Slide 9: BST::RangeSearch-recursiveopen paren cap T , ,, 28,, 43 close paren
	Slide 10: BST::RangeSearch-recursiveopen paren cap T , ,, 28,, 43 close paren
	Slide 11: BST::RangeSearch-recursiveopen paren cap T , ,, 28,, 43 close paren
	Slide 12: BST::RangeSearch-recursiveopen paren cap T , ,, 28,, 43 close paren
	Slide 13: BST::RangeSearch-recursiveopen paren cap T , ,, 28,, 43 close paren
	Slide 14: BST::RangeSearch-recursiveopen paren cap T , ,, 28,, 43 close paren
	Slide 15: BST::RangeSearch-recursiveopen paren cap T , ,, 28,, 43 close paren
	Slide 16: BST::RangeSearch-recursiveopen paren cap T , ,, 28,, 43 close paren
	Slide 17: BST Range Search
	Slide 18: Modified BST Range Search
	Slide 19: Modified BST Range Search
	Slide 20: Modified BST Range Search Analysis
	Slide 21: How to Find Top Inside Node
	Slide 22: Modified BST Range Search Summary
	Slide 23: 2D Range Tree Motivation
	Slide 24: 2D Range Tree Motivation
	Slide 25: 2D Range Tree Motivation
	Slide 26: 2D Range Tree Motivation
	Slide 27: Range Tree in ‘Full Glory’
	Slide 28: 2-dimensional Range Trees Full Definition
	Slide 29: Range search in 2D Range Tree Overview
	Slide 30: Range Tree Range Search Example Finished
	Slide 31: Range Tree Space Analysis
	Slide 32: Range Trees: Dictionary Operations
	Slide 33: Range Trees: Range Search Runtime
	Slide 34: Range Trees: Higher Dimensions
	Slide 35: Outline
	Slide 36: Range Search Data Structures Summary

