
CS 240 – Data Structures and Data Management

Module 8: Range-Searching in Dictionaries for Points

O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Summer 2023

Outline

▪ Range-Searching in Dictionaries for Points

▪ Range Trees

▪ Conclusion

Outline

▪ Range-Searching in Dictionaries for Points

▪ Range Trees

▪ Conclusion

Towards Range Trees

▪ Quadtrees and kd-trees
▪ intuitive and simple

▪ but both may be slow for range searches

▪ quadtrees are also potentially wasteful in space

▪ Consider BST/AVL trees
▪ efficient for one-dimensional dictionaries, if balanced

▪ range search is also efficient

▪ can we use ideas from BST/AVL trees for multi dimensional dictionaries?

▪ First let us consider range search in BST

BST::RangeSearch-recursive(𝑇,28,43)

28 43

36

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

BST Range Search example

5252

74

▪ blue node: recurse either to the left, or to the right, or both (according to the key value)
▪ boundary node, one or both subtrees may intersect range query

▪ red node: range search was not called on red node, but was called on its parent
▪ outside node, subtree does not intersect range query

▪ green node : all the keys in the subtree are in the range
▪ inside node, subtree completely inside range query

28 43

BST::RangeSearch-recursive(𝑇,28,43)

BST Range Search example

36

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

52

36 74

▪ blue node: recurse either to the left, or to the right, or both (according to the key value)
▪ boundary node, one or both subtrees may intersect range query

▪ red node: range search was not called on red node, but was called on its parent
▪ outside node, subtree does not intersect range query

▪ green node : all the keys in the subtree are in the range
▪ inside node, subtree completely inside range query

28 43

BST::RangeSearch-recursive(𝑇,28,43)

BST Range Search example

35

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

36

15

74

9

52

▪ blue node: recurse either to the left, or to the right, or both (according to the key value)
▪ boundary node, one or both subtrees may intersect range query

▪ red node: range search was not called on red node, but was called on its parent
▪ outside node, subtree does not intersect range query

▪ green node : all the keys in the subtree are in the range
▪ inside node, subtree completely inside range query

28 43

BST::RangeSearch-recursive(𝑇,28,43)

BST Range Search example

35

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

36

15

9

74

52

▪ blue node: recurse either to the left, or to the right, or both (according to the key value)
▪ boundary node, one or both subtrees may intersect range query

▪ red node: range search was not called on red node, but was called on its parent
▪ outside node, subtree does not intersect range query

▪ green node : all the keys in the subtree are in the range
▪ inside node, subtree completely inside range query

28 43

BST::RangeSearch-recursive(𝑇,28,43)

BST Range Search example

35

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

36

15

9 27

74

52

▪ blue node: recurse either to the left, or to the right, or both (according to the key value)
▪ boundary node, one or both subtrees may intersect range query

▪ red node: range search was not called on red node, but was called on its parent
▪ outside node, subtree does not intersect range query

▪ green node : all the keys in the subtree are in the range
▪ inside node, subtree completely inside range query

28 43

BST::RangeSearch-recursive(𝑇,28,43)

BST Range Search example

35

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

36

15

9 27

22

74

52

▪ blue node: recurse either to the left, or to the right, or both (according to the key value)
▪ boundary node, one or both subtrees may intersect range query

▪ red node: range search was not called on red node, but was called on its parent
▪ outside node, subtree does not intersect range query

▪ green node : all the keys in the subtree are in the range
▪ inside node, subtree completely inside range query

28 43

BST::RangeSearch-recursive(𝑇,28,43)

BST Range Search example

35

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

36

15

9 27

22 35

74

52

▪ blue node: recurse either to the left, or to the right, or both (according to the key value)
▪ boundary node, one or both subtrees may intersect range query

▪ red node: range search was not called on red node, but was called on its parent
▪ outside node, subtree does not intersect range query

▪ green node : all the keys in the subtree are in the range
▪ inside node, subtree completely inside range query

28 43

BST::RangeSearch-recursive(𝑇,28,43)

BST Range Search example

35

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

36

15

9 27

22 35

4242

74

52

▪ blue node: recurse either to the left, or to the right, or both (according to the key value)
▪ boundary node, one or both subtrees may intersect range query

▪ red node: range search was not called on red node, but was called on its parent
▪ outside node, subtree does not intersect range query

▪ green node : all the keys in the subtree are in the range
▪ inside node, subtree completely inside range query

28 43

BST::RangeSearch-recursive(𝑇,28,43)

BST Range Search example

35

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

36

15

9 27

22 35

4242

39

74

52

▪ blue node: recurse either to the left, or to the right, or both (according to the key value)
▪ boundary node, one or both subtrees may intersect range query

▪ red node: range search was not called on red node, but was called on its parent
▪ outside node, subtree does not intersect range query

▪ green node : all the keys in the subtree are in the range
▪ inside node, subtree completely inside range query

28 43

BST::RangeSearch-recursive(𝑇,28,43)

BST Range Search example

35

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

36

15

9 27

22 35

4242

39

37 41

74

52

▪ blue node: recurse either to the left, or to the right, or both (according to the key value)
▪ boundary node, one or both subtrees may intersect range query

▪ red node: range search was not called on red node, but was called on its parent
▪ outside node, subtree does not intersect range query

▪ green node : all the keys in the subtree are in the range
▪ inside node, subtree completely inside range query

28 43

BST::RangeSearch-recursive(𝑇,28,43)

BST Range Search example

35

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

36

15

9 27

22 35

4242

39

37 41

74

52

▪ blue node: recurse either to the left, or to the right, or both (according to the key value)
▪ boundary node, one or both subtrees may intersect range query

▪ red node: range search was not called on red node, but was called on its parent
▪ outside node, subtree does not intersect range query

▪ green node : all the keys in the subtree are in the range
▪ inside node, subtree completely inside range query

28 43

BST::RangeSearch-recursive(𝑇,28,43)

BST Range Search example

35

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

36

15

9 27

22 35

4242

39

37 41

74

52

46

49

▪ blue node: recurse either to the left, or to the right, or both (according to the key value)
▪ boundary node, one or both subtrees may intersect range query

▪ red node: range search was not called on red node, but was called on its parent
▪ outside node, subtree does not intersect range query

▪ green node : all the keys in the subtree are in the range
▪ inside node, subtree completely inside range query

BST Range Search

BST::RangeSearch-recursive(𝑟 ← 𝑟𝑜𝑜𝑡, 𝑘1, 𝑘2)

𝑟: root of a binary search tree, 𝑘1, 𝑘2: search keys

Returns keys in subtree at 𝑟 that are in range [𝑘1, 𝑘2]

if 𝑟 = 𝑁𝐼𝐿 then return

if 𝑘1 ≤ 𝑟. 𝑘𝑒𝑦 ≤ 𝑘2 then

𝐿 ← BST::RangeSearch-recursive(𝑟. 𝑙𝑒𝑓𝑡, 𝑘1, 𝑘2)

𝑅 ← BST::RangeSearch-recursive(𝑙 . 𝑟𝑖𝑔ℎ𝑡, 𝑘1, 𝑘2)

return 𝐿 ∪ {𝑟. 𝑘𝑒𝑦} ∪ 𝑅

if 𝑟. 𝑘𝑒𝑦 < 𝑘1 then

return BST::RangeSearch-recusive(𝑟. 𝑟𝑖𝑔ℎ𝑡, 𝑘1, 𝑘2)

if 𝑟. 𝑘𝑒𝑦 > 𝑘2 then

return BST-RangeSearch-recursive(𝑟. 𝑙𝑒𝑓𝑡, 𝑘1, 𝑘2)

▪ Keys returned in sorted order

Modified BST Range Search

▪ Search for left boundary 𝑘1 : this gives path P1

▪ Search for right boundary 𝑘2 : this gives path P2

▪ Boundary (blue nodes) are exactly all the nodes on paths P1 and P2

▪ Nodes are partitioned into three groups: boundary, outside, inside

35

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

52

36

15

9 27

22 35

4242

39

37 41

74

46

49

28 43

Modified BST Range Search

▪ Boundary nodes: nodes in P1 and P2

▪ check if boundary nodes are in the search range

▪ Outside nodes: nodes that are left of P1 or right of P2

▪ outside nodes are not in the search range

▪ range search is never called on an outside node

▪ Inside nodes: nodes that are right of P1 and left of P2

▪ we will stop the search at the topmost inside node

▪ all descendants of such node are in the range, just report them without search

▪ this is not more efficient for BST range search, but will be efficient when we
move to 2D search in range trees

Modified BST Range Search Analysis
▪ Assume balanced BST

▪ Running time consists of

1. search for path P1

▪ 𝑂(log 𝑛)

2. search for path P2 is 𝑂 log 𝑛

▪ 𝑂(log 𝑛)

3. check if boundary nodes in the range

▪ 𝑂(1) at each boundary node, there are 𝑂(log 𝑛) of them, 𝑂(log 𝑛) total time

4. spend 𝑂(1) at each topmost inside node

▪ since each topmost inside node is a child of boundary node, there are at
most 𝑂(log 𝑛) topmost inside nodes, so total time 𝑂(log 𝑛)

5. report descendants in subtrees of all topmost inside nodes

▪ topmost nodes are disjoint, so #descendants for inside topmost nodes is at
most 𝑠, output size

෍

topmost inside
node 𝑣

#descendants of 𝑣 ≤ 𝑠

▪ Total time 𝑂(𝑠 + log 𝑛)

How to Find Top Inside Node
▪ 𝑣 is a top inside node if

▪ 𝑣 is not is in 𝑃1 or 𝑃2

▪ parent of 𝑣 is in 𝑃1 or 𝑃2 (but not both)

▪ if parent is in 𝑃1, then 𝑣 is right child

▪ if parent is in 𝑃2, then 𝑣 is left child

𝑣

𝑤

𝑘𝑒𝑦 𝑤 ≤ 𝑘2

𝑢
𝑘1 ≤ 𝑘𝑒𝑦 𝑢 < 𝑘2

everything < 𝑘𝑒𝑦 𝑤 ≤ 𝑘2𝑘1 ≤

▪ Thus for each top inside node can report all descendants, no need for search

▪ BST range search does not become not faster overall, but top inside nodes
are important for 2𝑑 range search efficiency

▪ also important if need to just count the number of points in the search range

𝑘𝑒𝑦 𝑢 <

Modified BST Range Search Summary

▪ Inside node (which is not a topmost inside) is in a subtree of some topmost inside node

𝑇
▪ Search for k1: this gives left boundary path P1

▪ Search for k2: this gives right boundary path P2

▪ Find all topmost inside nodes

▪ not in P1 or P2

▪ left children of nodes in P2

▪ right children of nodes in P1

▪ go over all topmost inside nodes and report all nodes in their subtree

▪ Set of inside nodes = union disjoint subtrees rooted at topmost inside nodes

▪ To output nodes in the search range

▪ test each node in P1 , P2 and report if in range

2D Range Tree Motivation
𝟏𝟎, 12

𝟒, 4 𝟏𝟒, 9

𝟐, 7

𝟏, 5 𝟑, 1

𝟔, 15

𝟓, 13 𝟖, 10

𝟕, 11 𝟗, 6

𝟏𝟐, 14

𝟏𝟑, 2𝟏𝟏, 8

𝟏𝟔, 3

𝟏𝟓, 16

▪ Have a set of 2D points
▪ 𝑆 = { 1,5 , 2,7 , 3,1 , 4,4 , 5,13 , 6,15 7,11 , 8,10 , 9,6 , 10,12 , 11,8 , 12,14 , 13,2 , 14,9 , 15,16 , (16,3)}

▪ Example of 2D range search

▪ BST-RangeSearch(𝑇, 5, 14, 5, 9)

▪ find all points with 5 ≤ 𝑥 ≤ 14 and 5 ≤ 𝑦 ≤ 9

▪ Construct BST with 𝑥-coordinate key

▪ recall that points are in general positon, so all 𝑥-keys are distinct

▪ for any (𝑥1, 𝑦1) and (𝑥2, 𝑦2) in our set of points, 𝑥1 ≠ 𝑥2

▪ can search efficiently based only on 𝑥-coordinate

2D Range Tree Motivation
𝟏𝟎, 12

𝟒, 4

𝟐, 7

𝟏, 5 𝟑, 1

𝟔, 15

𝟓, 13 𝟖, 10

𝟕, 11 𝟗, 6

𝟏𝟑, 2𝟏𝟏, 8

𝟏𝟔, 3

𝟏𝟓, 16

▪ could be very inefficient

▪ for example, |𝐴| can be, say Θ 𝑛 and |𝐵| could be 𝑂 1

▪ 𝑂(𝑛), as bad as exhaustive search and worse than kd-trees search, 𝑂(|𝐵| + 𝑛)

▪ Consider 2𝐷 range search BST-RangeSearch(𝑇, 5, 14, 5, 9)

▪ First perform BST-RangeSearch 𝑇, 5, 14

𝟏𝟎, 12

𝟒, 4

𝟔, 15

𝟓, 13

𝟏𝟒, 9𝟏𝟒, 9

𝟏𝟐, 14

𝟖, 10

𝟏𝟐, 14

topmost inside nodes

▪ let 𝐴 be the set of nodes BST-RangeSearch(𝑇, 5, 14) returns

▪ 𝐴 = { 10,12 , 6,15 , 5,13 , 14,9 , 8,10 , 7,11 , 9,6 , 12,14 , 11,8 , (13,2)}

▪ let 𝐵 be the set of nodes BST-RangeSearch(𝑇, 5, 14, 5, 9) should return

▪ 𝐵 ⊆ 𝐴

▪ Need to go over all nodes in 𝐴 and check if their 𝑦-coordinate is in valid range, 𝑂(|𝐴|)

{ 10,12 , 6,15 , 5,13 , 14,9 , 8,10 , 7,11 , 9,6 , 12,14 , 11,8 , (13,2)}

2D Range Tree Motivation

▪ Next
▪ for boundary nodes, check if both 𝑥 and 𝑦 coordinates are in the range, takes 𝑂(log 𝑛)

time as there are 𝑂(log 𝑛) boundary nodes

▪ inside nodes are stored in 𝑂(log 𝑛) subtrees, with a topmost inside node as a root of
each subtree

𝟏𝟎, 12

𝟒, 4

𝟐, 7

𝟏, 5 𝟑, 1

𝟔, 15

𝟓, 13 𝟖, 10

𝟕, 11 𝟗, 6

𝟏𝟑, 2𝟏𝟏, 8

𝟏𝟔, 3

𝟏𝟓, 16

𝟏𝟎, 12

𝟒, 4

𝟔, 15

𝟓, 13

𝟏𝟒, 9𝟏𝟒, 9

𝟏𝟐, 14

𝟖, 10

𝟏𝟐, 14

topmost inside nodes

▪ Consider 2𝐷 range search BST-RangeSearch(𝑇, 5, 14, 5, 9)

▪ First perform only partial BST-RangeSearch 𝑇, 5, 14
▪ find boundary and topmost inside nodes, takes 𝑂(log 𝑛) time

▪ if we could search these subtrees, time would be very efficient

▪ however these subtrees do not support efficient search by 𝑦 coordinate

2D Range Tree Motivation2D Range Tree

11, 𝟖

12, 𝟏𝟒13, 𝟐

▪ Need to search subtrees by 𝑦-coordinate, but they are 𝑥-coordinate based

▪ Brute-force solution
▪ create an associate balanced BST tree for each node 𝑣

▪ stores the same items as the main (primary) subtree rooted at node 𝑣

▪ but key is 𝑦-coordinate

𝟏𝟎, 12

𝟒, 4

𝟐, 7

𝟏, 5 𝟑, 1

𝟔, 15

𝟓, 13 𝟖, 10

𝟕, 11 𝟗, 6

𝟏𝟑, 2𝟏𝟏, 8

𝟏𝟔, 3

𝟏𝟓, 16

𝟏𝟎, 12

𝟒, 4

𝟔, 15

𝟓, 13

𝟏𝟒, 9𝟏𝟒, 9

𝟏𝟐, 14

𝟖, 10

𝟏𝟐, 14

8, 𝟏𝟎

7, 𝟏𝟏9, 𝟔

Range Tree in ‘Full Glory’

11, 𝟖

12, 𝟏𝟒13, 𝟐

𝟏𝟎, 12

𝟒, 4

𝟐, 7

𝟏, 5 𝟑, 1

𝟔, 15

𝟓, 13

𝟕, 11 𝟗, 6

𝟏𝟑, 2𝟏𝟏, 8

𝟏𝟔, 3

𝟏𝟓, 16

𝟏𝟎, 12

𝟒, 4

𝟔, 15

𝟓, 13

𝟏𝟒, 9𝟏𝟒, 9

𝟏𝟐, 14

𝟖, 10

𝟏𝟐, 14

8, 𝟏𝟎

7, 𝟏𝟏9, 𝟔

Primary tree

3, 𝟏

4, 𝟒

9, 𝟔 6, 𝟏𝟓7, 𝟏𝟏

8, 𝟏𝟎

1, 𝟓 5, 𝟏𝟑

2, 𝟕

associated tree for
node (12,14)

associated tree for
node (8,10)

associated tree for node (4, 4)

𝟏, 5

associated tree for
node (1, 5)

2-dimensional Range Trees Full Definition

▪ Points 𝑆 = 𝑥0, 𝑦0 , 𝑥1, 𝑦1 , … , 𝑥𝑛−1, 𝑦𝑛−1

▪ Range tree is a tree of trees (a multi-level data structure)

▪ Primary structure

▪ balanced BST 𝑇 storing 𝑆 and uses 𝑥-coordinates as keys

▪ assume T is balanced, so height is 𝑂(log 𝑛)

▪ Each node 𝑣 of 𝑇 stores an associated tree 𝑇(𝑣), which is a balanced BST

Primary tree 𝑇
𝟏𝟎, 12

𝟒, 4 𝟏𝟒, 9

𝟐, 7

𝟏, 5 𝟑, 1

𝟔, 15

𝟓, 13 𝟖, 10

𝟕, 11 𝟗, 6

𝟏𝟐, 14

𝟏𝟑, 2𝟏𝟏, 8

𝟏𝟔, 3

𝟏𝟓, 16

𝑇(12,14)

11, 𝟖

12, 𝟏𝟒13, 𝟐

▪ let 𝑆(𝑣) be all descendants of 𝑣 in 𝑇, including 𝑣

▪ 𝑇(𝑣) stores 𝑆(𝑣) in BST, using 𝑦-coordinates as key

▪ note that 𝑣 is not necessarily the root of 𝑇(𝑣)

Range search in 2D Range Tree Overview

▪ RangeTree::RangeSearch 𝑇, 𝑥1, 𝑥2, 𝑦1, 𝑦2

▪ RangeTree::RangeSearch(𝑇, 5, 14, 5, 9)

1. Perform modified BST-RangeSearch(𝑇, 5, 14)

▪ find boundary and topmost inside nodes, but do not go through the inside subtrees

▪ modified version takes 𝑂(log 𝑛) time

▪ does not visit all the nodes in valid range for BST-RangeSearch 𝑇, 5, 14

3. For every topmost inside node 𝑣, search in associated tree BST::RangeSearch 𝑇(𝑣), 5, 9

2. Check if boundary nodes have valid 𝑥-coordinate and valid 𝑦-coordinate


𝟏𝟎, 12

𝟒, 4

𝟐, 7

𝟏, 5 𝟑, 1

𝟔, 15

𝟓, 13 𝟖, 10

𝟕, 11 𝟗, 6

𝟏𝟑, 2𝟏𝟏, 8

𝟏𝟔, 3

𝟏𝟓, 16

𝟏𝟎, 12

𝟒, 4

𝟔, 15

𝟓, 13

𝟏𝟒, 9𝟏𝟒, 9

𝟏𝟐, 14

𝟖, 10

𝟏𝟐, 14

topmost inside nodes







Range Tree Range Search Example Finished

▪ For every topmost inside node 𝑣, search in associated tree BST-RangeSearch 𝑇(𝑣), 5, 9

𝟏𝟎, 12

𝟒, 4

𝟐, 7

𝟏, 5 𝟑, 1

𝟔, 15

𝟓, 13 𝟖, 10

𝟕, 11 𝟗, 6

𝟏𝟑, 2𝟏𝟏, 8

𝟏𝟔, 3

𝟏𝟓, 16

𝟏𝟎, 12

𝟒, 4

𝟔, 15

𝟓, 13

𝟏𝟒, 9𝟏𝟒, 9

𝟏𝟐, 14𝟏𝟐, 14






𝟖, 10

▪ RangeTree::RangeSearch(𝑇, 5, 14, 5, 9)

BST-rangeSearch(𝑇(8,10), 5,9) BST-RangeSearch(𝑇(12,14), 5,9)

8, 𝟏𝟎

7, 𝟏𝟏9, 𝟔

8, 𝟏𝟎

9, 𝟔


11, 𝟖

12, 𝟏𝟒13, 𝟐

11, 𝟖

13, 𝟐 12, 𝟏𝟒
 

7, 𝟏𝟏

Range Tree Space Analysis

▪ Space for all associated trees is

▪ Primary tree 𝑇 uses 𝑂(𝑛) space

▪ For each 𝑣, associated tree 𝑇(𝑣) uses
𝑂(|𝑇(𝑣)|) space

𝑣

𝑣

𝑣

𝑣

𝑣

𝑣

෍

𝑣∈𝑇

𝑇 𝑣 =

= ෍

𝑣∈𝑇

#of ancestors of 𝑣

= 𝑐𝑛 log 𝑛≤ ෍

𝑣∈𝑇

𝑐log 𝑛

≤ 𝑐log 𝑛

= + + + + +

in how many associate
trees no appears?

#of ancestors of 𝑣

𝑇

+ + + + +

▪ Space is 𝑂(𝑛 log 𝑛)
▪ in the worst case, have 𝑛/2 leaves at the last level, and

space needed is Θ(𝑛 log 𝑛)

Range Trees: Dictionary Operations

▪ Delete

▪ analogous to insertion

▪ Problem

▪ want binary search trees to be balanced

▪ if we use AVL-trees, it makes insert/delete very slow

▪ rotation at 𝑣 changes 𝑆(𝑣) and hence requires re-build of 𝑇(𝑣)

▪ instead of rotations, can allow certain imbalance, rebuild
entire subtree if violated

▪ no details

▪ Search(𝑥, 𝑦)

▪ search by 𝑥 coordinate in the primary tree 𝑇

▪ Insert(𝑥, 𝑦)

▪ first, insert point by 𝑥-coordinate into the primary tree 𝑇

▪ then walk up to root and insert point by 𝑦-coordinate in all 𝑇(𝑣) of
nodes 𝑣 on path to root

Range Trees: Range Search Runtime
𝑇

▪ Find boundary nodes in the primary tree
and check if keys are in the range

▪ 𝑂(log 𝑛)

▪ Find topmost inside nodes in primary tree

▪ 𝑂(log 𝑛)

topmost inside
nodes

inside subtrees do not have any
nodes in common

▪ For each topmost inside node 𝑣, perform
range search for 𝑦-range in associate tree

▪ 𝑂(log 𝑛) topmost inside nodes

▪ running time for one search is 𝑂(log 𝑛 + 𝑠𝑣)

෍

topmost inside
node 𝑣

𝑐(log 𝑛 + 𝑠𝑣) + ෍

topmost inside
node 𝑣

𝑐𝑠𝑣= ෍

topmost inside
node 𝑣

𝑐log 𝑛

𝑂(log2 𝑛) ≤ 𝑐𝑠

▪ Time for range search in range tree: 𝑂(𝑠 + log2 𝑛)
▪ can make this even more efficient, but this is beyond the scope of the course

▪ let 𝑠𝑣 be #items returned for the subtree of topmost node 𝑣

Range Trees: Higher Dimensions

▪ Range trees can be generalized to d -dimensional space
▪ space 𝑂(𝑛 (log 𝑛)𝑑−1)

▪ construction time 𝑂(𝑛 (log 𝑛)𝑑)

▪ range search time 𝑂(𝑠 + (log 𝑛)𝑑)

▪ Note: 𝑑 is considered to be a constant

▪ Space-time tradeoff compared to kd trees

Outline

▪ Range-Searching in Dictionaries for Points

▪ Range Search

▪ Multi-Dimensional Data

▪ Quadtrees

▪ kd-Trees

▪ Range Trees

▪ Conclusion

Range Search Data Structures Summary
▪ Quadtrees
▪ simple, easy to implement insert/delete (i.e. dynamic set of points)

▪ work well only if points evenly distributed

▪ wastes space for higher dimensions

▪ convention: points on split lines belong to the right/top side

▪ kd-trees
▪ linear space

▪ range search is 𝑂(𝑠 + 𝑛)

▪ inserts/deletes destroy balance and range search time

▪ fix with occasional rebuilt

▪ convention: points on split lines belong to the right/top side

▪ Range trees
▪ fastest range search 𝑂(𝑠 + log2 𝑛)

▪ wastes some space

▪ insert and delete destroy balance, but can fix this with occasional rebuilt

	Slide 1
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: Towards Range Trees
	Slide 5: BST::RangeSearch-recursiveopen paren cap T , ,, 28,, 43 close paren
	Slide 6: BST::RangeSearch-recursiveopen paren cap T , ,, 28,, 43 close paren
	Slide 7: BST::RangeSearch-recursiveopen paren cap T , ,, 28,, 43 close paren
	Slide 8: BST::RangeSearch-recursiveopen paren cap T , ,, 28,, 43 close paren
	Slide 9: BST::RangeSearch-recursiveopen paren cap T , ,, 28,, 43 close paren
	Slide 10: BST::RangeSearch-recursiveopen paren cap T , ,, 28,, 43 close paren
	Slide 11: BST::RangeSearch-recursiveopen paren cap T , ,, 28,, 43 close paren
	Slide 12: BST::RangeSearch-recursiveopen paren cap T , ,, 28,, 43 close paren
	Slide 13: BST::RangeSearch-recursiveopen paren cap T , ,, 28,, 43 close paren
	Slide 14: BST::RangeSearch-recursiveopen paren cap T , ,, 28,, 43 close paren
	Slide 15: BST::RangeSearch-recursiveopen paren cap T , ,, 28,, 43 close paren
	Slide 16: BST::RangeSearch-recursiveopen paren cap T , ,, 28,, 43 close paren
	Slide 17: BST Range Search
	Slide 18: Modified BST Range Search
	Slide 19: Modified BST Range Search
	Slide 20: Modified BST Range Search Analysis
	Slide 21: How to Find Top Inside Node
	Slide 22: Modified BST Range Search Summary
	Slide 23: 2D Range Tree Motivation
	Slide 24: 2D Range Tree Motivation
	Slide 25: 2D Range Tree Motivation
	Slide 26: 2D Range Tree Motivation
	Slide 27: Range Tree in ‘Full Glory’
	Slide 28: 2-dimensional Range Trees Full Definition
	Slide 29: Range search in 2D Range Tree Overview
	Slide 30: Range Tree Range Search Example Finished
	Slide 31: Range Tree Space Analysis
	Slide 32: Range Trees: Dictionary Operations
	Slide 33: Range Trees: Range Search Runtime
	Slide 34: Range Trees: Higher Dimensions
	Slide 35: Outline
	Slide 36: Range Search Data Structures Summary

