CS 240 – Data Structures and Data Management

Module 9: String Matching

O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Spring 2023

Outline

String Matching

- Introduction
- Karp-Rabin Algorithm
- Boyer-Moore Algorithm
- Suffix Trees

Pattern Matching Definitions [1]

- Search for a string (pattern) in a large body of text
- T[0...n 1] text (or haystack) being searched
- $P[0 \dots m 1]$ pattern (or needle) being searched for
- Strings over alphabet Σ
- Return the first occurrence of *P* in *T*
- Example

T = Little piglets cooked for mother pig $\int_{+}^{+} \int_{+}^{+} \int_{+}^{}$

return smallest *i* such that

T[i+j] = P[j] for $0 \le j \le m-1$

- If P does not occur in T, return FAIL
- Applications
 - information retrieval (text editors, search engines), bioinformatics, data mining

More Definitions [2]

antidisestablishmentarianism

- Substring T[i...j] $0 \le i \le j < n$ is a string consisting of characters T[i], T[i+1], ..., T[j]
 - length is j i + 1
- Prefix of T is a substring T[0...i] of T for some $0 \le i \le n-1$
- Suffix of T is a substring T $[i \dots n 1]$ of T for some $0 \le i \le n 1$
- With this definition, prefix and suffix are never empty strings
 - sometimes want to allow empty string prefix and suffix

General Idea of Algorithms

- Pattern matching algorithms consist of guesses and checks
 - a guess or shift is a position i such that P might start at T[i]
 - valid guesses (initially) are $0 \le i \le n m$
 - a check of a guess is a single position j with 0 ≤ j < m where we compare T [i + j] to P[j]
 - must perform *m* checks of a single correct guess
 - may make fewer checks of an incorrect guess

Diagrams for Matching

- Diagram single run of pattern matching algorithm by matrix of checks
 - each row represents a single guess

Brute-Force Algorithm: Example

Example: T = abbbabbabbab, P = abba

Worst possible input

• $P = a \dots ab, T = aaaaaaaaa \dots aaaaaaa$ m - 1 times n times

- Have to perform (n m + 1)m checks, which is $\Theta((n m)m)$ runtime
 - this is $\Theta(nm)$ if $m \le n/2$
 - worst running time if m = n/2
 - $\Theta(n^2)$

Brute-force Algorithm

Checks every possible guess

Bruteforce::PatternMatching(T [0..n - 1], P[0..m - 1]) T: String of length n (text), P: String of length m (pattern) for $i \leftarrow 0$ to n - m do if strcmp(T [i ... i + m - 1], P) = 0 return "found at guess i" return FAIL

• Note: *strcmp* takes $\Theta(m)$ time

```
strcmp(T [i ... i + m - 1], P[0...m - 1])
for j \leftarrow 0 to m - 1 do
if T [i + j] is before P[j] in \Sigma then return -1
if T [i + j] is after P[j] in \Sigma then return 1
return 0
```

How to improve?

- Extra preprocessing on pattern P
 - Karp-Rabin
 - KMP
 - Boyer-Moore
 - Eliminate guesses based on completed matches and mismatches
- Do extra preprocessing on the text T
 - Suffix-trees
 - Suffix-arrays
 - Create a data structure to find matches easily

Outline

- String Matching
 - Introduction
 - Karp-Rabin Algorithm
 - Boyer-Moore Algorithm
 - Suffix Trees

Karp-Rabin Fingerprint Algorithm: Idea

- Hash functions are useful not just for hash tables!
- Idea: use hashing to eliminate guesses faster
 - compute hash function for each guess, compare with pattern hash
 - if values are unequal, then current guess cannot match the pattern
 - if values are equal, verify that pattern actually matches text
 - equal hash value does not guarantee equal keys
 - although if hash function is good, most likely keys are equal
 - O(m) time to verify, but happens rarely, and most likely only for true match
 - Example: $P = 5 \ 9 \ 2 \ 6 \ 5$, $T = 3 \ 1 \ 4 \ 1 \ 5 \ 9 \ 2 \ 6 \ 5 \ 3 \ 5$
 - standard hash function: flattening + modular (radix R = 10):

 $h(59265) = (5 \cdot 10^4 + 9 \cdot 10^3 + 2 \cdot 10^2 + 6 \cdot 10^1 + 5) \mod 97 = 59265 \mod 97 = 95$

Karp-Rabin Fingerprint Algorithm – First Attempt

- Algorithm correctness: match is not missed
 - $h(T[i..i + m 1]) \neq h(P) \Rightarrow$ guess *i* is not *P*
- What about running time?

Karp-Rabin Fingerprint Algorithm: First Attempt

- For each shift, $\Theta(m)$ time to compute hash value
 - since h(T[i...i + m 1]) depends on all m characters
 - worse than brute-force!
 - it is possible for brute force matching to use less than Θ(m) per shift, as it stops at the first mismatched character
- n m + 1 shifts in text to check
- Total time is $\Theta(mn)$ if pattern not in text
 - how can we improve this?

Karp-Rabin Fingerprint Algorithm: Idea

- Idea: compute next hash from previous one in O(1) time
- n m + 1 shifts in text to check
- $\Theta(m)$ to compute the first hash value
- O(1) to compute all other hash values
- $\Theta(n+m)$ expected time
 - recall that we still need to check if the pattern actually matches text whenever hash value of text is equal to the hash value of pattern
 - if hash function is good, then whenever hash values are equal, pattern most likely matches the text

Karp-Rabin Fingerprint Algorithm – Fast Rehash

- For historical reasons, hashes are called **fingerprints**
- Insight: can update a fingerprint from previous fingerprint in constant time
 - 0(1) time to compute any hash, except first one
- Example

T = 4 1 5 9 2 6 5 3 5, P = 5 9 2 6 5

- Initialization of the algorithm
 - 1. compute first hash: $h(41592) = 41592 \mod 97 = 76 \quad [\Theta(m) \text{ time}]$
 - 2. also compute $10000 \mod 97 = 9$
- Main loop: repeatedly compute next hash from the previous one
- Example : <u>15926</u> mod 97 from <u>41592</u> mod 97
 - get rid of the old first digit and add new last digit

41592
$$\xrightarrow{-4 \cdot 10000}$$
 1592 $\xrightarrow{\times 10}$ 15920 $\xrightarrow{+6}$ 15926

Algebraically,

 $(41592 - (4 \cdot 10000)) \cdot 10 + 6 = 15926$

Karp-Rabin Fingerprint Algorithm – Fast Rehash

- Insight: can update a fingerprint from previous fingerprint in constant time
- Example

T = 4 1 5 9 2 6 5 3 5, P = 5 9 2 6 5

Initialization of the algorithm

1. compute first hash: $h(41592) = 41592 \mod 97 = 76 \quad [\Theta(m) \text{ time}]$

- 2. also compute $10000 \mod 97 = 9$
- Main loop: repeatedly compute next hash from the previous one
- Example: <u>15926</u> mod 97 from <u>41592</u> mod 97

$$(41592 - (4 \cdot 10000)) \cdot 10 + 6 = 15926$$

$$((41592 - (4 \cdot 10000)) \cdot 10 + 6) \mod 97 = 15926 \mod 97$$

$$((41592 \mod 97 - (4 \cdot (10000 \mod 97)))) \cdot 10 + 6) \mod 97 = 15926 \mod 97$$
previous hash precomputed
$$((76 - (4 \cdot 9)) \cdot 10 + 6) \mod 97 = 15926 \mod 97$$

constant number of operations, independent of m

 $18 = 15926 \mod 97$

Karp-Rabin Fingerprint Algorithm – Conclusion

Karp-Rabin-RollingHash::PatternMatching(T, P) $M \leftarrow$ suitable prime number $h_P \leftarrow h(P[0...m-1)])$ $h_T \leftarrow h(T [0..m-1)])$ $s \leftarrow 10^{m-1} \mod M$ for $i \leftarrow 0$ to n - mif $h_T = h_P$ if strcmp(T [i ... i + m - 1], P) = 0**return** "found at guess *i*" if i < n - m // compute hash-value for next guess $h_T \leftarrow ((h_T - T[i] \cdot s) \cdot 10 + T[i + m]) \mod M$ return FAIL

- Choose "table size" M at random to be prime in {2, ..., mn²}
- Expected running time is O(m+n)
- $\Theta(mn)$ worst-case, but this extremely is unlikely
- Improvement: reset *M* if no match at $h_T = h_P$

Outline

String Matching

- Introduction
- Karp-Rabin Algorithm
- Boyer-Moore Algorithm
- Suffix Trees

Boyer-Moore Algorithm Motivation

- Fastest pattern matching in practice on English Text
- Important components
 - Reverse-order searching
 - compare P with a guess moving backwards
 - When a mismatch occurs choose the better option among the two below
 - 1. Bad character heuristic
 - eliminate shifts based on mismatched character of T
 - 2. Good suffix heuristic
 - eliminate shifts based on the matched part (i.e.) suffix of P

Reverse Searching vs. Forward Searching

T= where is waldo, P = aldo

- r does not occur in P = aldo
- shift pattern past r
- w does not occur in P = aldo
- shift pattern past w
- bad character heuristic can rule out
 many shifts with reverse searching

W	h	e	r	e	i	S	w	а	d	0
а										

- w does not occur in P = aldo
- move pattern past w
- the first shift moves pattern past w
- no shifts are ruled out

bad character heuristic does not rule out any shifts with forward searching when the first character of the pattern is mismatched

What if Mismatched Text Character Occurs in *P*?

T = acranapple, P = aaron

- Mismatched character in the text is a
- Find **last** occurrence of a in P
- Shift the pattern to the right until **last** a in P aligns with a in text
 - all smaller shifts are impossible since they do not match a
- Precompute last occurrence of any letter before matching starts

Bad Character Heuristic: Side Note

T= acranapple, P = aaron

- If we shifted until the **first** a in P aligns with a in text
 - this would give a possible shift, but misses a previous possible shift, possibly leading to a missed pattern

Bad Character Heuristic: Full Version

• Extends to the case when mismatched text character does occur in P

T= acranapple, P = aaron

- Mismatched character in the text is a
- Shift the pattern to the right so that the last **a** in P aligns with **a** in text
- Continue matching the pattern (in reverse)

Bad Character Heuristic: Full Version

• Extends to the case when mismatched text character does occur in P

T= acranapple, P = aaron

- Mismatched character in the text is a
- Shift the pattern to the right so that the last **a** in P aligns with **a** in text
- Continue matching the pattern (in reverse)

- Compute the last occurrence array L(c) of any character in the alphabet
 - L(c) = -1 if character *c* does not occur in *P*, otherwise
 - L(c) =largest index j such that P[j] = c
- Example: *P* = aaron
 - initialization

char	а	n	0	r	all others
L(c)	-1	-1	-1	-1	-1

this means:	а	b	С	d	е	f	•••	х	У	Z
tins means.	-1	-1	-1	-1	-1	-1		-1	-1	-1

in actual implen	nentation:
------------------	------------

0	1	2	3	4	5	 24	25	26
-1	-1	-1	-1	-1	-1	-1	-1	-1

- Compute the last occurrence array L(c) of any character in the alphabet
 - L(c) = -1 if character *c* does not occur in *P*, otherwise
 - L(c) =largest index j such that P[j] = c
- Example: *P* = aaron
 - computation

aa	ron

i = 0

char	а	n	0	r	all others
L(c)	0	-1	-1	-1	-1

L is valid for P = a

- Compute the last occurrence array L(c) of any character in the alphabet
 - L(c) = -1 if character *c* does not occur in *P*, otherwise
 - L(c) =largest index j such that P[j] = c
- Example: *P* = aaron
 - computation

i = 1

char	а	n	0	r	all others
L(c)	1	-1	-1	-1	-1

L is valid for P = aa

- Compute the last occurrence array L(c) of any character in the alphabet
 - L(c) = -1 if character *c* does not occur in *P*, otherwise
 - L(c) =largest index j such that P[j] = c
- Example: *P* = aaron
 - computation

i = 2

char	а	n	0	r	all others
L(c)	1	-1	-1	2	-1

L is valid for P = aar

- Compute the last occurrence array L(c) of any character in the alphabet
 - L(c) = -1 if character *c* does not occur in *P*, otherwise
 - L(c) =largest index j such that P[j] = c
- Example: *P* = aaron
 - computation

i = 3

char	а	n	0	r	all others
L(c)	1	-1	3	2	-1

L is valid for P = aaro

- Compute the last occurrence array L(c) of any character in the alphabet
 - L(c) = -1 if character *c* does not occur in *P*, otherwise
 - L(c) =largest index j such that P[j] = c
- Example: *P* = aaron
 - computation

aaron

char	а	n	0	r	all others
L(c)	1	4	3	2	-1

L is valid for P = aaron

i = 4

• Total time is $O(m + |\Sigma|)$

Boyer-More vs. Brute-force Indexing

P = cad

- Brute-force
 - maintain variables *i* and *j*
 - *j* is the position in the pattern
 - *i* is equal to the current shift
 - check is performed by determining if T[i + j] = P[j]

	j=0 $j=1$ $j=2i=0$ $i=1$ $i=2$									
Т	С	а	b	а	b					
	С	а	b							

- Boyer-More
 - maintain variables i and j
 - *j* is the position in the pattern
 - *i* is the position in the text where we do the next check
 - check is performed by determining if
 T[i] = P[j]
 - current shift is i j

Bad Character Heuristic: Shifting Formula

char	а	n	0	r	all others
L(c)	1	4	3	2	-1

T = acranapple, P = aaron

- Let L(c) be the last occurrence of character c in P
 - $L(\mathbf{a}) = 1$ in our example
- When mismatch occurs at text position *i*, pattern position *j*, update
 - j = m 1
 - start matching at the end of the pattern
 - i = i + m 1 L(c)
 - for our example
 - *j* = 5 − 1 = 4
 - i = 3 + 5 1 1 = 6

Bad Character Heuristic: Shifting Formula Explained

- Text character is c at the mismatch position i in the text
- i = i + m 1 L(c)

$$i^{new} - (m-1) + L(c) = i^{old}$$
$$i^{new} = i^{old} + m - 1 - L(c)$$
$$i = i + m - 1 - L(c)$$

Bad Character Heuristic: Important Use Condition

- Text character is *c* at the mismatch position *i* in the text
- i = i + m 1 L(c)
- Old shift: i j
- New shift: i + (m 1) L(c) (m 1) = i L(c)
- If L(c) > j, new shift < old shift, shifts P in the wrong direction, not useful
 - we already ruled that shift out, no point to come back to it
- Example: T = acranapple, P = reroa

- bad character heuristic makes sense to used only if L(c) < j
 - $L(c) \neq j$ in case of a mismatch

Bad Character Heuristic: Brute-Force Step

- If L(c) > j
 - pattern would shift in wrong direction if used bad character heuristic
 - therefore, do brute-force step
 - *j* = *m* − 1
 - i = i j + m

$$i^{old} -j +m - 1 +1 = i^{new}$$
$$i^{new} = i^{old} - j + m$$
$$i = i - j + m$$

Bad Character Heuristic: Unified Formula

• If
$$L(c) < j$$

• $j = m - 1$
• $i = i + m - 1 - L(c)$

• If
$$L(c) > j$$

•
$$j = m - 1$$

•
$$i = i - j + m$$

Unified formula for *i* that works in all cases

$$i = i + m - 1 - \min\{L(c), j - 1\}$$

Boyer-More Example

char	а	e	р	r	others
L(c)	1	3	2	4	-1

P = paper

Unified formula for *i* that works in all cases

not found!

 $i = i + m - 1 - \min\{L(c), j - 1\}$

Boyer-Moore Algorithm

```
BoyerMoore(T, P)
     L \leftarrow last occurrence array computed from P
    j \leftarrow m-1
     i \leftarrow m-1
     while i < n and j \ge 0 do //current guess begins at index i - j
           if T[i] = P[j] then
                  i \leftarrow i - 1
                  j \leftarrow j - 1
           else
                  i \leftarrow i + m - 1 - \min\{L(c), j - 1\}
                  j \leftarrow m-1
    if j = -1 return "found at shift i + 1" // i moved one position to
                                                 // the left of the first char in T
```

else return FAIL

Good Suffix Heuristic

P = onobobo

- Text has letters obo
- Do the smallest shift so that obo fits
- Can precompute this from the pattern itself, before matching starts
 - 'if failure at j = 3, shift pattern by 2'
- Continue matching from the end of the new shift
- Will not study the precise way to do it

Boyer-Moore Algorithm with Good Suffix

Boyer-Moore Summary

- Boyer-Moore performs very well, even when using only bad character heuristic
- Worst case run time is O(nm) with bad character heuristic only, but in practice much faster
- On typical English text, Boyer-Moore looks only at \approx 25% of text *T*
- With good suffix heuristic, can ensure $O(n + m + |\Sigma|)$ run time
 - no details

Outline

String Matching

- Introduction
- Karp-Rabin Algorithm
- Boyer-Moore Algorithm
- Suffix Trees

Suffix Tree: Trie of Suffixes

- What if we search for many patterns *P* within the same fixed text *T*?
- Idea: preprocess the text T rather than pattern P
- Observation: P is a substring of T if and only if P is a prefix of some suffix of T
- Example: P = ish T = establishmentsuffix
- Store all suffixes of T in a trie
- To save space
 - use compressed trie
 - store suffixes implicitly via indices into T
- This is called a suffix tree

Trie of suffixes: Example

T = bananaban

S = {bananaban\$, ananaban\$, nanaban\$, anaban\$, naban\$,..., ban\$, n\$, \$}

Trie of suffixes: Example

Store suffixes via indices

Trie of suffixes: Example

Store suffixes via indices

Tries of suffixes

 In actual implementation, each leaf *l* stores the start of its suffix in variable *l.start*

Suffix tree

- Suffix tree: compressed trie of suffixes
- If *P* occurs in the text, it is a prefix of one (or more) strings stored in the trie
- Have to modify search in a trie to allow search for a prefix

Building Suffix Tree

- Building
 - text T has n characters and n + 1 suffixes
 - can build suffix tree by inserting each suffix of T into compressed trie
 - takes $\Theta(|\Sigma|n^2)$ time
 - there is a way to build a suffix tree of T in $\Theta(|\Sigma|n)$ time
 - beyond the course scope
- Pattern Matching
 - essentially search for P in compressed trie
 - some changes needed, since P may only be prefix of stored word
 - run-time is
 - $O(|\Sigma|m)$, assuming each node stores children in a linked list
 - O(m), assuming each node stores children in an array
- Summary
 - theoretically good, but construction is slow or complicated and lots of spaceoverhead
 - rarely used in practice