CS 240 — Data Structures and Data Management

Module 9: String Matching

O. Veksler

Based on lecture notes by many previous ¢s240 instructors
David R. Cheriton School of Computer Science, University of Waterloo

Spring 2023

Outline

= String Matching
" |ntroduction
= Karp-Rabin Algorithm
= Boyer-Moore Algorithm
= Suffix Trees

Pattern Matching Definitions [1]

= Search for a string (pattern) in a large body of text

= T[0...n — 1] text (or haystack) being searched

= P[0..m — 1] pattern (or needle) being searched for
= Strings over alphabet 2

= Return the first occurrence of Pin T

= Example
T = Little piglets cooked for mother pig
P= pig

n=36, m=3, 1=7
= return smallest i such that
Tl[i+j] =P[j] for0 <j<m-1
= |f P does not occurin T, return FAIL
= Applications

= information retrieval (text editors, search engines), bioinformatics, data mining

More Definitions [2]

antidisestablishmentarianism

= Substring T[i...j] 0 <i <j < nisa string consisting of characters
T[], T [i+1],...,T[j]
" lengthis j—i+1

= Prefixof T isasubstring T [0...i] of T forsome 0 <i< n-—1

= Suffixof T isasubstring T [i...n — 1] of T forsome0<i<n-—1
= With this definition, prefix and suffix are never empty strings
= sometimes want to allow empty string prefix and suffix

General Idea of Algorithms

guessati =10 guessati=1 ... guessati =06 guessati =7
abbbababbab abbbababbab abbbababbab abbbababbab
abba abba abba abba

checkatj = 0 checkatj =1

= Pattern matching algorithms consist of guesses and checks

= aguess or shift is a position i such that P might start at T[{]
= valid guesses (initially) are0 < i <n—m
" acheck of a guess is a single position j with 0 < j < m where we
compare T [i + j]to P[j]
"= must perform m checks of a single correct guess
" may make fewer checks of an incorrect guess

Diagrams for Matching

= Diagram single run of pattern matching algorithm by matrix of checks
= each row represents a single guess

a b b b ab a b b ab
a |/ b|b]|a

Brute-Force Algorithm: Example
Example: T = abbbababbab, P = abba

a b b b a b a b bab
alblb}a
/ a‘
guessi =0 a
checkj =3
a
b| b
2
a|b|b|a

= Worst possible input

= P =q..ab, T = \aaaaaaaa Loaaaaaaa

m — 1 times

J

|

n times

guessi =1
checkj =0

"= Have to perform (n —m + 1)m checks, which is ®((n — m)m) runtime

" thisis @(nm) if m <n/2

= worst running time if m =n/2

0(n?)

Brute-force Algorithm

= Checks every possible guess

Bruteforce::PatternMatching(T [0..n — 1], P[0..m — 1])
T : String of length n (text), P: String of length m (pattern)
fori « Oton—mdo
if strcemp(T [i ... i+m—1], P)=0
return “found at guess i”
return FAIL

= Note: strcmp takes ®(m) time

stremp(T [i ... i +m—1],P[0...m —1])
forj <« Otom —1do
if T [i + j] is before P[j] in ¥ then return -1
if T [i + j] is after P[j] in X then return 1
return 0

How to improve?

= Extra preprocessing on pattern P

= Karp-Rabin

= KMP

= Boyer-Moore

= Eliminate guesses based on completed matches and mismatches
= Do extra preprocessing on the text T

= Suffix-trees

= Suffix-arrays

" Create a data structure to find matches easily

Outline

= String Matching

= Karp-Rabin Algorithm

Karp-Rabin Fingerprint Algorithm: Idea

= Hash functions are useful not just for hash tables!

= |dea: use hashing to eliminate guesses faster
= compute hash function for each guess, compare with pattern hash
= jf values are unequal, then current guess cannot match the pattern
= jf values are equal, verify that pattern actually matches text
= equal hash value does not guarantee equal keys

= although if hash function is good, most likely keys are equal
= O(m) time to verify, but happens rarely, and most likely only for true match

= Example: P=59265, T=31415926535
= standard hash function: flattening + modular (radix R = 10):
h(59265) =(5-10*+9-103+2-10% + 6 - 10 + 5) mod 97 = 59265 mod 97 = 95
3 1 4 1 5 9 2 6 5 3 5

hash-value 84 h(31415) = 84
hash-value 94 h(14159) = 94
hash-value 76 h(41592) =76
hash-value 18 h(15926) = 18

hash-value 95 h(59265) = 95

Karp-Rabin Fingerprint Algorithm —First Attempt

Karp-Rabin-Simple::patternMatching(T, P)
hp < h(P[0..m —1)])
fori <« Oton — m
hr < R(T [i...i +m — 1]) ©(m)
if hr = hp
if stremp(T [i...i+m—1],P) =0
return “found at guess i”

return FAIL

= Algorithm correctness: match is not missed
* hA(T[i..i+m—1]) # h(P) = guessiisnotP
= What about running time?

Karp-Rabin Fingerprint Algorithm: First Attempt

O(m) ——

e(m)
e(m)
e(m)
e(m)

3

1 4 1 5 9 2 6 5 3 5

hash-value 84

y

hash-value 94

\ 4

hash-value 76

hash-value 18

\ 4

hash-value 95

For each shift, ®(m) time to compute hash value

since h(T[i...i +m — 1]) depends on all m characters
worse than brute-force!

" jtis possible for brute force matching to use less than @(m) per
shift, as it stops at the first mismatched character

n —m + 1 shifts in text to check
Total time is ®@(mn) if pattern not in text

how can we improve this?

Karp-Rabin Fingerprint Algorithm: Idea

31 4 1 5 9 2 6 5 3 5

®(m) — hash-value 84

0(1) *hash-value 94

0(1) I hash-value 76

0(1) *hash-value 18
0(1) 1 hash-value 95

* |dea: compute next hash from previous one in O(1) time
* n—m+ 1 shifts in text to check

= O(m) to compute the first hash value

= (0(1) to compute all other hash values

= O(n+ m) expected time

= recall that we still need to check if the pattern actually matches text whenever hash
value of text is equal to the hash value of pattern

= jf hash function is good, then whenever hash values are equal, pattern most likely
matches the text

Karp-Rabin Fingerprint Algorithm — Fast Rehash

= For historical reasons, hashes are called fingerprints

Insight: can update a fingerprint from previous fingerprint in constant time
= (0(1) time to compute any hash, except first one
= Example
T=415926535, P=59265
= |nitialization of the algorithm
1. compute first hash: h(41592) = 41592 mod 97 = 76 [B(m) time]
2. alsocompute 10000 mod 97 = 9
= Main loop: repeatedly compute next hash from the previous one
= Example: 15926 mod 97 from 41592 mod 97

= getrid of the old first digit and add new last digit

41592 — 210990 ysgy X10 L 4e900-FC . 15926

= Algebraically,
(41592 — (4 - 10000)) - 10 + 6 = 15926

Karp-Rabin Fingerprint Algorithm — Fast Rehash

= |nsight: can update a fingerprint from previous fingerprint in constant time

= Example

T=415926535, P=59265
= |nitialization of the algorithm

1. compute first hash: h(41592) = 41592 mod 97 = 76 [O(m) time]
2. also compute 10000 mod 97 = 9
= Main loop: repeatedly compute next hash from the previous one

= Example: 15926 mod 97 from 41592 mod 97

(41592 — (4 - 10000)) - 10 + 6 = 15926
((41592 — (4 -10000)) - 10 + 6) mod 97 = 15926 mod 97

((41592 mod 97 — (4 - (10000 mod 97))) - 10 + 6) mod 97 = 15926 mod 97
\ J \ J

| |
previous hash precomputed

(76 —= (4-9)-10 + 6)mod 97 = 15926 mod 97
\

)

.1,
constant number of operations, independent of m

18 = 15926 mod 97

Karp-Rabin Fingerprint Algorithm — Conclusion

Karp-Rabin-RollingHash::PatternMatching(T , P)

M < suitable prime number
hp < h(P[0...m — 1)])
hr < h(T [0..m — 1)])
s« 10M™ tmod M
fori <« O0Oton—m

if h = hp

if strcemp(T [i...i+m—1], P) = 0
return “found at guess i”
if i <n—m//compute hash-value for next guess

hr < ((hr — T[i] - s) - 10 + T [i + m])mod M
return FAIL

= Choose “table size” M at random to be prime in {2, ..., mn*}
= Expected running time is O(m + n)

= O(mn) worst-case, but this extremely is unlikely

" |mprovement: reset M if no matchat hy = hp

Outline

= String Matching

= Boyer-Moore Algorithm

Boyer-Moore Algorithm Motivation

" Fastest pattern matching in practice on English Text
=" |mportant components
= Reverse-order searching
= compare P with a guess moving backwards
= When a mismatch occurs choose the better option among the two below
1. Bad character heuristic
= eliminate shifts based on mismatched character of T
2. Good suffix heuristic
= eliminate shifts based on the matched part (i.e.) suffix of P

Reverse Searching VS.

Forward Searching

T= whereiswaldo, P =aldo

wlhlelrleli|ls|wlal|l|d]|o

W hlelrjelils|w|al|l|d|o

m r does not occurin P = aldo

= shift pattern pastr .
= wdoes notoccurin P =aldo .
= shift pattern past w .

= bad character heuristic can rule out =
many shifts with reverse searching

w does not occurin P = aldo

move pattern past w
the first shift moves pattern past w

no shifts are ruled out

bad character heuristic does not
rule out any shifts with forward
searching when the first character
of the pattern is mismatched

What if Mismatched Text Character Occurs in P?

T=acranapple, P =aaron

alclrlan|jalplp|l|e
oln
alalrlioln impossible shift
ajajr n next possible shift
\\
\
—
' last occurrence of

a in pattern
Mismatched character in the text is a

Find last occurrence of ain P
Shift the pattern to the right until last a in P aligns with a in text

= all smaller shifts are impossible since they do not match a
Precompute last occurrence of any letter before matching starts

Bad Character Heuristic: Side Note

T=acranapple, P =aaron

alclrlan|jalplp|l|e
on
ajaj|r,oln next possible shift
ajalr N also a valid shift

= |f we shifted until the first a in P aligns with a in text

= this would give a possible shift, but misses a previous possible shift,
possibly leading to a missed pattern

Bad Character Heuristic: Full Version

= Extends to the case when mismatched text character does occur in P

T=acranapple, P =aaron

[a]

= Mismatched character in the text is a

= Shift the pattern to the right so that the last a in P aligns with a in text
= Continue matching the pattern (in reverse)

Bad Character Heuristic: Full Version

= Extends to the case when mismatched text character does occur in P

T=acranapple, P =aaron

alclrlan|jalplp|l|e
o/ n
[a] n

= Mismatched character in the text is a

= Shift the pattern to the right so that the last a in P aligns with a in text
= Continue matching the pattern (in reverse)

Bad Character Heuristic: Last Occurrence Array

= Compute the last occurrence array L(c) of any character in the alphabet
= L(c) = —1 if character ¢ does not occur in P, otherwise
= L(c) = largest index j such that P[j] = ¢

= Example: P =aaron

" jnitialization char | a|n|o|r | all others
L(c) |-1]-1]-1]-1] -1

, alb|lc|d|e]|f Xy |z
this means:
-1(-1(-1]-11-1]|-1 -1(-1(-1
o|l1(2|3]|4]-5 24 | 25 | 26

in actual implementation:

Bad Character Heuristic: Last Occurrence Array

= Compute the last occurrence array L(c) of any character in the alphabet
= L(c) = —1 if character ¢ does not occur in P, otherwise
= L(c) = largest index j such that P[j] = ¢

= Example: P =aaron

= computation char | a|n|o|r | all others
L(c) |0]-1]-1]-1] -1

ddron
1 =20

L is valid for P = a

Bad Character Heuristic: Last Occurrence Array

= Compute the last occurrence array L(c) of any character in the alphabet
= L(c) = —1 if character ¢ does not occur in P, otherwise
= L(c) = largest index j such that P[j] = ¢

= Example: P =aaron

= computation char | a|n|o|r | all others
L(c) [1]-1]-1]-1] -1

dadron

1 =1

L is valid for P = aa

Bad Character Heuristic: Last Occurrence Array

= Compute the last occurrence array L(c) of any character in the alphabet
= L(c) = —1 if character ¢ does not occur in P, otherwise
= L(c) = largest index j such that P[j] = ¢

= Example: P =aaron

= computation char | a|n|o|r | all others
L(c) | 1]-1]-1] 2 -1

dadlron

[=2

L is valid for P = aar

Bad Character Heuristic: Last Occurrence Array

= Compute the last occurrence array L(c) of any character in the alphabet
= L(c) = —1 if character ¢ does not occur in P, otherwise
= L(c) = largest index j such that P[j] = ¢

= Example: P =aaron

= computation char | a|n|o|r | all others
L(c) [1]-1]3]2 -1

ddron
i1 =3

L is valid for P = aaro

Bad Character Heuristic: Last Occurrence Array

= Compute the last occurrence array L(c) of any character in the alphabet
= L(c) = —1 if character ¢ does not occur in P, otherwise
= L(c) = largest index j such that P[j] = ¢

= Example: P =aaron

= computation char | a|n|o|r | all others
L(c) |1{4|3]|2 -1

ddron

i =4

L is valid for P = aaron

= Totaltimeis O(m + |}])

Boyer-More vs. Brute-force Indexing

P = cad

Jj=0 j=1 j=2

T |clalblalb
i=0| c|a | b

= Brute-force
" maintain variables i and j
= jis the position in the pattern
= | is equal to the current shift

= check is performed by
determining if T[i + j] = P|j]

o~
Tl
(=R]
o~
Il
e
o~

NN

(@)
Q
o | O
Q
O

= Boyer-More

maintain variables i and j
J is the position in the pattern

[is the position in the text where we
do the next check

check is performed by determining if
— P[]]

current shiftisi —j

Bad Character Heuristic: Shifting Formula

j=3 j=4

char |a|n|o|r | all others i=3 i=6

L(c) |1|4(3]|2 -1 ajclrlajnja|p|p|l|e
o/ n

T=acranapple, P =aaron [a] n

= Let L(c) be the last occurrence of character c in P
= L(a) = 1inour example
= When mismatch occurs at text position i, pattern position j, update
= j=m-—-1
= start matching at the end of the pattern
= [=i+m—1-L(c)
= for our example
= j=5-1=4
= [=345-1-1=6

Bad Character Heuristic: Shifting Formula Explained

= Text character is ¢ at the mismatch position i in the text
= [=i+m—1-L(c)

l'Old jnew
T C
X
‘ + L —(n —1)
I (i~
H\“%)

"W —(m — 1) +L(c) = i°

inew = jold y ;m —1 — L(c)

i =i+m—1-—L(c)

Bad Character Heuristic: Important Use Condition

Text character is ¢ at the mismatch position i in the text

i =i+m—1-—L(c)

Old shift: i —j

New shift: i + (m — 1) - L(c)- (m—1) =i —L(c)

If L(c) > j, new shift < old shift, shifts P in the wrong direction, not useful
= we already ruled that shift out, no point to come back to it

Example:

T= acranapple, P =reroa

J=3
i=8

d

SRS

(0]

(0

d

L(a) =4

L(a)>j=3
oldshift: i —j=8—-3=5
[{ =8+5—-1—-4=38
j=5-1=4

new shift: i —j=8—-4=4

bad character heuristic makes sense to used only if L(c) < j

L(c) # j in case of a mismatch

Bad Character Heuristic: Brute-Force Step
= IfL(c)>j

= pattern would shift in wrong direction if used bad character heuristic
= therefore, do brute-force step
= j=m-—-1

" i=i—j+m
old ineW

—J

»
>

m—1 +1

o —j +m—1 +1 ="V
jnew — jold —j +m

I =1l—j+m

Bad Character Heuristic: Unified Formula

= If L(c) <j

= j=m-1

= [=i+m—1-L(c)
= IfL(c) >j

= j=m-—-1

s i=i—j4m

= Unified formula for i that works in all cases
i =i+m—1-—min{L(c),j — 1}

BOyer‘More Example char | a others
L(c) |1 -1
P = paper
j=4 j=4 j=4 j=3 j=4 j=4
i=4 i=7 i=9 i=13 i=14 i=15
T'fle|le|d| a|l |l |plo|o rirl|o
r i=7
[a] r i=9
[p] r i=14
e |r i=15
r i=20
not found!

= Unified formula for i that works in all cases
i =i+m—1-—min{L(c),j — 1}

Boyer-Moore Algorithm

BoyerMoore(T, P)
L < last occurrence array computed from P
jJem—1
I «m—1
whilei <nandj = 0 do //current guess begins atindex i —
if T[i] = P[j] then

I «<i—1
jej—1
else
i «i+m—1-—min{L(c),j — 1}
jem—1
if j = —1 return “found at shifti + 1” // i moved one position to

// the left of the first charin T
else return FAIL

Good Suffix Heuristic

P = onobobo

o~
1
w W

o
(on
@)
o
o
(on
(on
o
c
)
o
Q
=

S5 |o|O
O

= Text has letters obo
= Do the smallest shift so that obo fits

= Can precompute this from the pattern itself, before matching starts
= fif failure at j = 3, shift pattern by 2’

= Continue matching from the end of the new shift

= Will not study the precise way to do it

Boyer-Moore Algorithm with Good Suffix

BoyerMoore(T, P)
L < last occurrence array computed from P
S « good suffix array computed from P
jem—1
[«m—1
whilei <nandj = 0 do //current guess begins atindex i — j
if T[i] = P[j] then
I «i1—1
jej—1
else
i «i+m—1-—min{L(T[i]),S[j1}
jem—1
if j = —1 return “found at shifti + 1”
else return FAIL

Boyer-Moore Summary

= Boyer-Moore performs very well, even when using only bad character
heuristic

= Worst case run time is O(nm) with bad character heuristic only, but in
practice much faster

= Ontypical English text, Boyer-Moore looks only at 25% of text T
= With good suffix heuristic, can ensure O(n + m + |Z|) run time
= nodetails

Outline

= String Matching

= Suffix Trees

Suffix Tree: Trie of Suffixes

" What if we search for many patterns P within the same fixed text T?
= |dea: preprocess the text T rather than pattern P

= Observation: P is a substring of T if and only if P is a prefix of some
suffixof T

= Example: P = ish prefix

T =estab|\ishment}

|
suffix

= Store all suffixes of T in a trie
= To save space
= use compressed trie
= store suffixes implicitly via indices into T

= This is called a suffix tree

Trie of suffixes: Example

= T =bananaban
Suffixes = {bananaban, ananaban, nanaban, anaban, naban, aban, ban, an, n, A}

S = {bananaban$, ananaban$, nanaban$, anaban$,nabans,..., bans, nS, S}

° -® ~e—|aban$

e——e——eo—>{anaban$

P *——0—0—@ -9 ~ ananaban$
& ban$
a n
>0 Q
2 n a b a n $
——— —0——+0—>0—0 -@ ~ bananaban$
§ %

» -® ~® -® -® » Nnanaban$

Trie of suffixes: Example

o 1 2 3 4 5 6 7 8 9
IT'=lblaln|aln|lal/blal/n|$S
= Store suffixes via indices
T[9..9]
a n $
0 .0 @ e— aban$
n an
5. < & : a n $
ci:Eii © .e——e——e>anaban$
Y n
a b a n $
P *——0—0—@ -9 ~ ananaban$
& ban$
a n
° @ ro Q
2 .::iiﬁk n a b a n $
*——>0——>0—>0—0 -® ~ bananaban$

a n
-————+¢————+-§~nabans

a b a n $
@ . [] =i g

» nanaban$

Trie of suffixes: Example

o 1 2 3 4 5 6 7 8 9
I'=lblaln|alnlalbla n|S
= Store suffixes via indices
T[9..9]
a n $
v .® ~® ~o— [5..9]
n an
5. < & : a n $
ci:Eii © .e——e——e>anaban$
> n
a b a n $
P *——0—0—@ -9 ~ ananaban$
& ban$
a n
° @ ro Q
2 .::iiﬁk n a b a n $
*——>0——>0—>0—0 -® ~ bananaban$

a n
-—ra—r-—$- naban$

a b a n $
@ . [] =i g

» nanaban$

Tries of suffixes

" |n actual implementation, each

leaf [stores the start of its o 1 2 3 4 5 6 7 8 9
suffix in variable L. start I'=bjla/n|la|n|al|b n|sS

T/@gg] [.start =9

‘/\/7, TI%9]| L. start = 7
K - _
. ./\‘a‘ o a n i—$;T]_>3<9] [.start = 3
<
—-—--—n»-—$i- [.start =
LD

[.start = 4

T[2:9]

=-—--—--—~-—$FT[¢<§] [.start =0

[.start = 2

: o 1
Suffix tree R

= IN
O W
S |
QA
o
~
)

= Suffix tree: compressed trie of suffixes
= |f P occursin the text, it is a prefix of one (or more) strings stored in the trie
= Have to modify search in a trie to allow search for a prefix

T[9..9]
T[7..9]
g >
KA 1[3..9]
\T[l..9]
T[4..9]

T[2..9]

Building Suffix Tree

= Building
= text T has n characters and n + 1 suffixes
= can build suffix tree by inserting each suffix of T into compressed trie
= takes O(]Z|n?) time
= thereis a way to build a suffix tree of T in O(|2|n) time
= beyond the course scope
= Pattern Matching
= essentially search for P in compressed trie
= some changes needed, since P may only be prefix of stored word
"= run-timeis
= 0(]X|m), assuming each node stores children in a linked list
= (0(m), assuming each node stores children in an array
= Summary

= theoretically good, but construction is slow or complicated and lots of space-
overhead

u rarely used in practice

