
CS 240 – Data Structures and Data Management

Module 9: String Matching

O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Spring 2023

Outline

 String Matching

 Introduction

 Karp-Rabin Algorithm

 Boyer-Moore Algorithm

 Suffix Trees

Pattern Matching Definitions [1]
 Search for a string (pattern) in a large body of text

 𝑇[0. . . 𝑛 − 1] text (or haystack) being searched

 𝑃[0…𝑚 − 1] pattern (or needle) being searched for

 Strings over alphabet Σ

 Return the first occurrence of 𝑃 in 𝑇

 Example

𝑇 = L i t t l e p i g l e t s c o o k e d f o r m o t h e r p i g

𝑃 = p i g

𝑛 = 36, 𝑚 = 3, 𝑖 = 7

 return smallest 𝑖 such that

𝑇 [𝑖 + 𝑗] = 𝑃 𝑗 for 0 ≤ 𝑗 ≤ 𝑚 − 1

 If 𝑃 does not occur in 𝑇, return FAIL

 Applications

 information retrieval (text editors, search engines), bioinformatics, data mining

7
 +

 0
7

 +
 1

7
 +

 2

More Definitions [2]

 Substring 𝑇 𝑖. . . 𝑗 0 ≤ 𝑖 ≤ 𝑗 < 𝑛 is a string consisting of characters
𝑇 𝑖 , 𝑇 𝑖 + 1 , . . . , 𝑇[𝑗]

 length is 𝑗 − 𝑖 + 1

antidisestablishmentarianism

 Prefix of 𝑇 is a substring 𝑇 [0. . . 𝑖] of 𝑇 for some 0 ≤ 𝑖 ≤ 𝑛 − 1

 Suffix of 𝑇 is a substring 𝑇 [𝑖. . . 𝑛 − 1] of 𝑇 for some 0 ≤ 𝑖 ≤ 𝑛 − 1

 With this definition, prefix and suffix are never empty strings

 sometimes want to allow empty string prefix and suffix

antidisestablishmentarianismantidisestablishmentarianismantidisestablishmentarianism

General Idea of Algorithms

 Pattern matching algorithms consist of guesses and checks

 a guess or shift is a position 𝑖 such that 𝑃 might start at 𝑇[𝑖]

 valid guesses (initially) are 0 ≤ 𝑖 ≤ 𝑛 −𝑚

guess at 𝑖 = 0

abbbababbab

abba

guess at 𝑖 = 1
abbbababbab

abba

guess at 𝑖 = 6

abbbababbab

abba

guess at 𝑖 = 7

abbbababbab

abba

check at 𝑗 = 0 check at 𝑗 = 1

 a check of a guess is a single position 𝑗 with 0 ≤ 𝑗 < 𝑚 where we
compare 𝑇 [𝑖 + 𝑗] to 𝑃[𝑗]

abbbababbab

abba

 must perform 𝑚 checks of a single correct guess

 may make fewer checks of an incorrect guess

abbbababbab

abba

…

Diagrams for Matching

 Diagram single run of pattern matching algorithm by matrix of checks

 each row represents a single guess

a b b b a b a b b a b
a b b a

Brute-Force Algorithm: Example
Example: 𝑇 = abbbababbab, 𝑃 = abba

a b b b a b a b b a b

 Worst possible input

 𝑃 = 𝑎…𝑎𝑏, 𝑇 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎…𝑎𝑎𝑎𝑎𝑎𝑎𝑎

a b b a
a

a

a

a b b

a

a b b a

 Have to perform (𝑛 − 𝑚 + 1)𝑚 checks, which is Θ((𝑛 − 𝑚)𝑚) runtime

 this is Θ(𝑛𝑚) if 𝑚 ≤ 𝑛/2

 worst running time if 𝑚 = 𝑛/2

 Θ(𝑛2)

𝑚− 1 times 𝑛 times

guess 𝑖 = 1
check 𝑗 = 0guess 𝑖 = 0

check 𝑗 = 3

Brute-force Algorithm

Bruteforce::PatternMatching(𝑇 [0. . 𝑛 − 1], 𝑃[0. .𝑚 − 1])

𝑇 : String of length n (text), 𝑃: String of length m (pattern)

for 𝑖 ← 0 to 𝑛 − 𝑚 do

if strcmp(𝑇 [𝑖 … 𝑖 + 𝑚 − 1], 𝑃) = 0

return “found at guess 𝑖”

return FAIL

 Note: strcmp takes Θ(𝑚) time

strcmp(𝑇 [𝑖 … 𝑖 + 𝑚 − 1], 𝑃[0. . . 𝑚 − 1])

for 𝑗 ← 0 to 𝑚 − 1 do

if 𝑇 [𝑖 + 𝑗] is before 𝑃[𝑗] in Σ then return -1

if 𝑇 [𝑖 + 𝑗] is after 𝑃[𝑗] in Σ then return 1

return 0

 Checks every possible guess

How to improve?

 Extra preprocessing on pattern 𝑃

 Karp-Rabin

 KMP

 Boyer-Moore

 Eliminate guesses based on completed matches and mismatches

 Do extra preprocessing on the text T

 Suffix-trees

 Suffix-arrays

 Create a data structure to find matches easily

Outline

 String Matching

 Introduction

 Karp-Rabin Algorithm

 Boyer-Moore Algorithm

 Suffix Trees

Karp-Rabin Fingerprint Algorithm: Idea
 Hash functions are useful not just for hash tables!

 Idea: use hashing to eliminate guesses faster

 compute hash function for each guess, compare with pattern hash

 Example: 𝑃 = 5 9 2 6 5, 𝑇 = 3 1 4 1 5 9 2 6 5 3 5

 standard hash function: flattening + modular (radix 𝑅 = 10):

3 1 4 1 5 9 2 6 5 3 5

ℎ(59265) =

ℎ(31415) = 84

ℎ(14159) = 94

ℎ(41592) = 76

ℎ(15926) = 18

ℎ(59265) = 95

hash-value 84

hash-value 94

hash-value 76

hash-value 18

hash-value 95

 if values are unequal, then current guess cannot match the pattern

 if values are equal, verify that pattern actually matches text

 equal hash value does not guarantee equal keys

 although if hash function is good, most likely keys are equal

 𝑂(𝑚) time to verify, but happens rarely, and most likely only for true match

(5 ∙ 104 + 9 ∙ 103 + 2 ∙ 102 + 6 ∙ 101 + 5) 𝑚𝑜𝑑 97= 59265 𝑚𝑜𝑑 97 = 95

Karp-Rabin Fingerprint Algorithm – First Attempt

Karp-Rabin-Simple::patternMatching(𝑇, 𝑃)

ℎ𝑃 ← ℎ(𝑃[0. .𝑚 − 1)])

for 𝑖 ← 0 to 𝑛 − 𝑚

ℎ𝑇 ← ℎ(𝑇 [𝑖. . . 𝑖 + 𝑚 − 1])

if ℎ𝑇 = ℎ𝑃

if strcmp(𝑇 [𝑖 … 𝑖 + 𝑚 − 1], 𝑃) = 0

return “found at guess 𝑖”

return FAIL

 Algorithm correctness: match is not missed

 ℎ(𝑇 [𝑖. . 𝑖 + 𝑚 − 1]) ≠ ℎ(𝑃) ⇒ guess 𝑖 is not 𝑃

 What about running time?

Θ(𝑚)

Karp-Rabin Fingerprint Algorithm: First Attempt

3 1 4 1 5 9 2 6 5 3 5

hash-value 84

hash-value 94

hash-value 76

hash-value 18

hash-value 95

Θ(𝑚)

Θ(𝑚)

Θ(𝑚)

Θ(𝑚)

Θ(𝑚)

 For each shift, Θ(𝑚) time to compute hash value

 since ℎ(𝑇[𝑖. . . 𝑖 + 𝑚 − 1]) depends on all 𝑚 characters

 worse than brute-force!
 it is possible for brute force matching to use less than Θ(𝑚) per

shift, as it stops at the first mismatched character

 𝑛 −𝑚 + 1 shifts in text to check

 Total time is Θ(𝑚𝑛) if pattern not in text

 how can we improve this?

Karp-Rabin Fingerprint Algorithm: Idea
3 1 4 1 5 9 2 6 5 3 5

hash-value 84

hash-value 94

hash-value 76

hash-value 18

hash-value 95

Θ(𝑚)

𝑂(1)

𝑂(1)

𝑂(1)

𝑂(1)

 Idea: compute next hash from previous one in 𝑂(1) time

 𝑛 −𝑚 + 1 shifts in text to check

 Θ(𝑚) to compute the first hash value

 𝑂(1) to compute all other hash values

 Θ 𝑛 +𝑚 expected time
 recall that we still need to check if the pattern actually matches text whenever hash

value of text is equal to the hash value of pattern

 if hash function is good, then whenever hash values are equal, pattern most likely
matches the text

Karp-Rabin Fingerprint Algorithm – Fast Rehash
 For historical reasons, hashes are called fingerprints

 Insight: can update a fingerprint from previous fingerprint in constant time

 𝑂(1) time to compute any hash, except first one

 Example

T = 4 1 5 9 2 6 5 3 5, 𝑃 = 5 9 2 6 5

 Algebraically,

4 1 5 9 2

41592 − 4 · 10000 · 10 + 6 = 15926

41592
−4 · 10000

1592
× 10

15920
+6

15926

 Initialization of the algorithm

1. compute first hash: ℎ 41592 = 41592 𝑚𝑜𝑑 97 = 76 [Θ(𝑚) time]

2. also compute 10000 𝑚𝑜𝑑 97 = 9

 Main loop: repeatedly compute next hash from the previous one

 Example : 15926 𝑚𝑜𝑑 97 from 41592 𝑚𝑜𝑑 97

 get rid of the old first digit and add new last digit

Karp-Rabin Fingerprint Algorithm – Fast Rehash
 Insight: can update a fingerprint from previous fingerprint in constant time

 Example

T = 4 1 5 9 2 6 5 3 5, 𝑃 = 5 9 2 6 54 1 5 9 2
 Initialization of the algorithm

1. compute first hash: ℎ 41592 = 41592 𝑚𝑜𝑑 97 = 76 [Θ(𝑚) time]

2. also compute 10000 𝑚𝑜𝑑 97 = 9

 Main loop: repeatedly compute next hash from the previous one

 Example: 15926 𝑚𝑜𝑑 97 from 41592 𝑚𝑜𝑑 97

41592 − 4 · 10000 · 10 + 6 = 15926

15926 𝑚𝑜𝑑 97

(41592 𝑚𝑜𝑑 97 − 4 · (10000 𝑚𝑜𝑑 97) · 10 + 6) 𝑚𝑜𝑑 97 = 15926 𝑚𝑜𝑑 97

previous hash precomputed

76 − 4 · 9 · 10 + 6 𝑚𝑜𝑑 97 = 15926 𝑚𝑜𝑑 97

constant number of operations, independent of 𝑚

(41592 − 4 · 10000 · 10 + 6) 𝑚𝑜𝑑 97 =

18 = 15926 𝑚𝑜𝑑 97

Karp-Rabin Fingerprint Algorithm – Conclusion
Karp-Rabin-RollingHash::PatternMatching(𝑇 , 𝑃)

𝑀 ← suitable prime number

ℎ𝑃 ← ℎ(𝑃[0. . . 𝑚 − 1)])

ℎ𝑇 ← ℎ(𝑇 [0. .𝑚 − 1)])

𝑠 ← 10𝑚−1𝑚𝑜𝑑 𝑀

for 𝑖 ← 0 to 𝑛 −𝑚

if ℎ𝑇 = ℎ𝑃

if strcmp(𝑇 [𝑖 … 𝑖 + 𝑚 − 1], 𝑃) = 0

return “found at guess 𝑖”

if 𝑖 < 𝑛 − 𝑚 // compute hash-value for next guess

ℎ𝑇 ← ℎ𝑇 − 𝑇 𝑖 · 𝑠 · 10 + 𝑇 𝑖 + 𝑚 𝑚𝑜𝑑 𝑀

return FAIL

 Choose “table size” 𝑀 at random to be prime in {2, … ,𝑚𝑛2}

 Expected running time is 𝑂(𝑚 + 𝑛)

 Θ(𝑚𝑛) worst-case, but this extremely is unlikely

 Improvement: reset 𝑀 if no match at ℎ𝑇 = ℎ𝑃

Outline

 String Matching

 Introduction

 Karp-Rabin Algorithm

 Boyer-Moore Algorithm

 Suffix Trees

Boyer-Moore Algorithm Motivation

 Fastest pattern matching in practice on English Text

 Important components

 Reverse-order searching

 compare 𝑃 with a guess moving backwards

 When a mismatch occurs choose the better option among the two below

1. Bad character heuristic

 eliminate shifts based on mismatched character of 𝑇

2. Good suffix heuristic

 eliminate shifts based on the matched part (i.e.) suffix of 𝑃

Reverse Searching vs. Forward Searching

w h e r e i s w a l d o

𝑇= whereiswaldo, 𝑃 = aldo

a

w h e r e i s w a l d o

 shift pattern past r

r

a l d o

a l d o

a l d o

 r does not occur in 𝑃 = aldo

o

 w does not occur in 𝑃 = aldo

w

 shift pattern past w

odla

 bad character heuristic can rule out
many shifts with reverse searching

w

 w does not occur in 𝑃 = aldo

 move pattern past w

o

a l d o

 the first shift moves pattern past w

 no shifts are ruled out

 bad character heuristic does not
rule out any shifts with forward
searching when the first character
of the pattern is mismatched

What if Mismatched Text Character Occurs in 𝑃?

a c r a n a p p l e

𝑇= acranapple, 𝑃 = aaron

no

 Mismatched character in the text is a

a

 Find last occurrence of a in 𝑃

 Shift the pattern to the right until last a in P aligns with a in text

 all smaller shifts are impossible since they do not match a

 Precompute last occurrence of any letter before matching starts

a a r o n

a a r o n next possible shift

impossible shift

last occurrence of
a in pattern

Bad Character Heuristic: Side Note

a c r a n a p p l e

𝑇= acranapple, 𝑃 = aaron

no
a

a a r o na a r o na a r o n

a a r o n

 If we shifted until the first a in P aligns with a in text

 this would give a possible shift, but misses a previous possible shift,
possibly leading to a missed pattern

also a valid shift

next possible shift

Bad Character Heuristic: Full Version
 Extends to the case when mismatched text character does occur in 𝑃

a c r a n a p p l e

𝑇= acranapple, 𝑃 = aaron

no
a

[a]

 Mismatched character in the text is a

 Shift the pattern to the right so that the last a in P aligns with a in text

 Continue matching the pattern (in reverse)

Bad Character Heuristic: Full Version
 Extends to the case when mismatched text character does occur in 𝑃

a c r a n a p p l e

𝑇= acranapple, 𝑃 = aaron

no
a

a a r o na a r o na a r o n[a] n

 Mismatched character in the text is a

 Shift the pattern to the right so that the last a in P aligns with a in text

 Continue matching the pattern (in reverse)

Bad Character Heuristic: Last Occurrence Array

𝑐ℎ𝑎𝑟 a n o r all others

𝐿(𝑐) -1 -1 -1 -1 -1

 Compute the last occurrence array 𝐿 𝑐 of any character in the alphabet

 𝐿 𝑐 = −1 if character 𝑐 does not occur in 𝑃, otherwise

 𝐿 𝑐 = largest index 𝑗 such that 𝑃 𝑗 = 𝑐

 Example: 𝑃 = aaron

 initialization

a b c d e f … x y z

-1 -1 -1 -1 -1 -1 -1 -1 -1
this means:

0 1 2 3 4 5 … 24 25 26

-1 -1 -1 -1 -1 -1 -1 -1 -1
in actual implementation:

Bad Character Heuristic: Last Occurrence Array

𝑐ℎ𝑎𝑟 a n o r all others

𝐿(𝑐) -1 -1 -1 -1 -1

 Compute the last occurrence array 𝐿 𝑐 of any character in the alphabet

 𝐿 𝑐 = −1 if character 𝑐 does not occur in 𝑃, otherwise

 𝐿 𝑐 = largest index 𝑗 such that 𝑃 𝑗 = 𝑐

 Example: 𝑃 = aaron

 computation

aaron
𝑖 = 0

a
0

𝐿 is valid for 𝑃 = a

Bad Character Heuristic: Last Occurrence Array

𝑐ℎ𝑎𝑟 a n o r all others

𝐿(𝑐) 0 -1 -1 -1 -1

 Compute the last occurrence array 𝐿 𝑐 of any character in the alphabet

 𝐿 𝑐 = −1 if character 𝑐 does not occur in 𝑃, otherwise

 𝐿 𝑐 = largest index 𝑗 such that 𝑃 𝑗 = 𝑐

 Example: 𝑃 = aaron

 computation

aaron
𝑖 = 1

a
1

𝐿 is valid for 𝑃 = aa

Bad Character Heuristic: Last Occurrence Array

𝑐ℎ𝑎𝑟 a n o r all others

𝐿(𝑐) 1 -1 -1 -1 -1

 Compute the last occurrence array 𝐿 𝑐 of any character in the alphabet

 𝐿 𝑐 = −1 if character 𝑐 does not occur in 𝑃, otherwise

 𝐿 𝑐 = largest index 𝑗 such that 𝑃 𝑗 = 𝑐

 Example: 𝑃 = aaron

 computation

aaron
𝑖 = 2

r
2

𝐿 is valid for 𝑃 = aar

Bad Character Heuristic: Last Occurrence Array

𝑐ℎ𝑎𝑟 a n o r all others

𝐿(𝑐) 1 -1 -1 2 -1

 Compute the last occurrence array 𝐿 𝑐 of any character in the alphabet

 𝐿 𝑐 = −1 if character 𝑐 does not occur in 𝑃, otherwise

 𝐿 𝑐 = largest index 𝑗 such that 𝑃 𝑗 = 𝑐

 Example: 𝑃 = aaron

 computation

aaron
𝑖 = 3

o
3

𝐿 is valid for 𝑃 = aaro

Bad Character Heuristic: Last Occurrence Array

𝑐ℎ𝑎𝑟 a n o r all others

𝐿(𝑐) 1 -1 3 2 -1

 Compute the last occurrence array 𝐿 𝑐 of any character in the alphabet

 𝐿 𝑐 = −1 if character 𝑐 does not occur in 𝑃, otherwise

 𝐿 𝑐 = largest index 𝑗 such that 𝑃 𝑗 = 𝑐

 Example: 𝑃 = aaron

 computation

aaron
𝑖 = 4

n
4

 Total time is 𝑂(𝑚 + |∑|)

𝐿 is valid for 𝑃 = aaron

Boyer-More vs. Brute-force Indexing

 Boyer-More

 maintain variables 𝑖 and 𝑗

 𝑗 is the position in the pattern

 𝑖 is the position in the text where we
do the next check

 check is performed by determining if
𝑇 𝑖 = 𝑃 𝑗

 current shift is 𝑖 − 𝑗

𝑇

𝑃 = 𝑐𝑎𝑑

c a b a b

𝒋=𝟎
𝒊=𝟎

c
𝑇 c a b a b

𝒋=𝟎

c

 Brute-force

 maintain variables 𝑖 and 𝑗

 𝑗 is the position in the pattern

 𝑖 is equal to the current shift

 check is performed by
determining if 𝑇 𝑖 + 𝑗 = 𝑃 𝑗

a

𝒋=𝟏

b

𝒋=𝟐

𝒊=𝟎

𝒋=𝟏
𝒊=𝟏

a

𝒋=𝟐
𝒊=𝟐

b

Bad Character Heuristic: Shifting Formula

a c r a n a p p l e
no

a

𝒋=𝟑
𝒊=𝟑

𝑇= acranapple, 𝑃 = aaron

𝒋=𝟒
𝒊=𝟔

 Let 𝐿(𝑐) be the last occurrence of character 𝑐 in 𝑃

 𝐿 𝐚 = 1 in our example

 When mismatch occurs at text position 𝑖, pattern position 𝑗, update

 𝑗 = 𝑚 − 1

 start matching at the end of the pattern

 𝑖 = 𝑖 + 𝑚 − 1 − 𝐿(𝑐)

 for our example

 𝑗 = 5 − 1 = 4

 𝑖 = 3 + 5 − 1 − 1 = 6

[a] n

𝑐ℎ𝑎𝑟 a n o r all others

𝐿(𝑐) 1 4 3 2 -1

Bad Character Heuristic: Shifting Formula Explained

𝑖𝑜𝑙𝑑 𝑖𝑛𝑒𝑤

+𝑳(𝒄) −(𝒎− 𝟏)

𝑖𝑛𝑒𝑤

𝑖𝑛𝑒𝑤 = 𝑖𝑜𝑙𝑑 +𝑚 − 1 − 𝐿 𝑐

𝑖 = 𝑖 + 𝑚 − 1 − 𝐿(𝑐)

𝑖

 Text character is 𝑐 at the mismatch position 𝑖 in the text

 𝑖 = 𝑖 + 𝑚 − 1 − 𝐿(𝑐)

− 𝑚 − 1 +𝐿 𝑐 = 𝑖𝑜𝑙𝑑

𝑐
𝑐𝑇

𝐿(𝑐)

Bad Character Heuristic: Important Use Condition
 Text character is 𝑐 at the mismatch position 𝑖 in the text

 𝑖 = 𝑖 + 𝑚 − 1 − 𝐿(𝑐)

 Old shift: 𝑖 − 𝑗

 New shift: 𝑖 + (𝑚 − 1) – 𝐿(𝑐) – (𝑚 − 1) = 𝑖 − 𝐿(𝑐)

 If 𝐿 𝑐 > 𝑗, new shift < old shift, shifts 𝑃 in the wrong direction, not useful

 we already ruled that shift out, no point to come back to it

 Example:

 bad character heuristic makes sense to used only if 𝑳 𝒄 < 𝒋

 𝐿 𝑐 ≠ 𝑗 in case of a mismatch

c a c r w a a p a a e

ao

a

𝒋=𝟑
𝒊=𝟖

𝑇= acranapple, 𝑃 = reroa

ao

a

𝐿 𝐚 = 4
𝐿 𝐚 > 𝑗 = 3

old shift: 𝑖 − 𝑗 = 8 − 3 = 5
𝑖 = 8 + 5 − 1 − 4 = 8
𝑗 = 5 − 1 = 4

new shift: 𝑖 − 𝑗 = 8 − 4 = 4

Bad Character Heuristic: Brute-Force Step
 If 𝐿 𝑐 > 𝑗

 pattern would shift in wrong direction if used bad character heuristic

 therefore, do brute-force step

 𝑗 = 𝑚 − 1

 𝑖 = 𝑖 − 𝑗 + 𝑚
𝑖𝑜𝑙𝑑 𝑖𝑛𝑒𝑤

= 𝑖𝑛𝑒𝑤

𝑖𝑛𝑒𝑤 = 𝑖𝑜𝑙𝑑 − 𝑗 +𝑚

𝑖 = 𝑖 − 𝑗 + 𝑚

𝑖

−𝑗

𝑚 − 1 +1

𝑖𝑜𝑙𝑑 −𝑗 +𝑚 − 1 +1

Bad Character Heuristic: Unified Formula

 If 𝐿(𝑐) < 𝑗

 𝑗 = 𝑚 − 1

 𝑖 = 𝑖 + 𝑚 − 1 − 𝐿(𝑐)

 If 𝐿 𝑐 > 𝑗

 𝑗 = 𝑚 − 1

 𝑖 = 𝑖 − 𝑗 + 𝑚

 Unified formula for 𝑖 that works in all cases

𝑖 = 𝑖 + 𝑚 − 1 −min{𝐿 𝑐 , 𝑗 − 1}

f e e d a l l p o o r p a r r o t s

𝑃 = paper

r

𝒋=𝟒
𝒊=𝟒

𝑇

Boyer-More Example 𝑐ℎ𝑎𝑟 a e p r others

𝐿(𝑐) 1 3 2 4 -1

 Unified formula for 𝑖 that works in all cases

𝑖 = 𝑖 + 𝑚 − 1 −min 𝐿 𝑐 , 𝑗 − 1

𝒊=𝟕

[a]

𝒋=𝟒
𝒊=𝟕

r 𝒊=𝟗

𝒋=𝟒
𝒊=𝟗

[p] r 𝒊 =𝟏4

𝒋=𝟒
𝒊=14

re 𝒊 = 𝟏𝟓

not found!

𝒋=𝟑
𝒊=13

r 𝒊 = 𝟐𝟎

𝒋=𝟒
𝒊=15

Boyer-Moore Algorithm

BoyerMoore(𝑇, 𝑃)

𝐿 ← last occurrence array computed from 𝑃

𝑗 ← 𝑚 − 1

𝑖 ← 𝑚 − 1

while 𝑖 < 𝑛 and 𝑗 ≥ 0 do //current guess begins at index 𝑖 − 𝑗

if 𝑇 𝑖 = 𝑃[𝑗] then

𝑖 ← 𝑖 − 1

𝑗 ← 𝑗 − 1

else

𝑖 ← 𝑖 + 𝑚 − 1 −min{𝐿 𝑐 , 𝑗 − 1}

𝑗 ← 𝑚 − 1

if 𝑗 = −1 return “found at shift 𝑖 + 1” // 𝑖 moved one position to

// the left of the first char in 𝑇

else return FAIL

0

Good Suffix Heuristic

o n o o o b o o o i b b o u n d a r y

𝑃 = onobobo

obob

𝒋=𝟑
𝒊=𝟑

𝑇

 Text has letters obo

 Do the smallest shift so that obo fits

o n o b o b o

 Can precompute this from the pattern itself, before matching starts

 ‘if failure at 𝑗 = 3, shift pattern by 2’

 Continue matching from the end of the new shift

 Will not study the precise way to do it

o n o b o b o

Boyer-Moore Algorithm with Good Suffix

BoyerMoore(𝑇, 𝑃)

𝐿 ← last occurrence array computed from 𝑃

𝑆 ← good suffix array computed from 𝑃

𝑗 ← 𝑚 − 1

𝑖 ← 𝑚 − 1

while 𝑖 < 𝑛 and 𝑗 ≥ 0 do //current guess begins at index 𝑖 − 𝑗

if 𝑇 𝑖 = 𝑃[𝑗] then

𝑖 ← 𝑖 − 1

𝑗 ← 𝑗 − 1

else

𝑖 ← 𝑖 + 𝑚 − 1 −min{𝐿 𝑇 𝑖 , 𝑆[𝑗]}

𝑗 ← 𝑚 − 1

if 𝑗 = −1 return “found at shift 𝑖 + 1”

else return FAIL

Boyer-Moore Summary

 Boyer-Moore performs very well, even when using only bad character
heuristic

 Worst case run time is 𝑂(𝑛𝑚) with bad character heuristic only, but in
practice much faster

 On typical English text, Boyer-Moore looks only at ≈25% of text 𝑇

 With good suffix heuristic, can ensure 𝑂(𝑛 +𝑚 + |Σ|) run time

 no details

Outline

 String Matching
 Introduction
 Karp-Rabin Algorithm
 Boyer-Moore Algorithm
 Suffix Trees

Suffix Tree: Trie of Suffixes

 What if we search for many patterns 𝑃 within the same fixed text 𝑇?

 Idea: preprocess the text 𝑇 rather than pattern 𝑃

 Observation: 𝑃 is a substring of 𝑇 if and only if 𝑃 is a prefix of some
suffix of 𝑇

 Example: 𝑃 = ish

𝑇 =establishment

 Store all suffixes of 𝑇 in a trie

 To save space

 use compressed trie
 store suffixes implicitly via indices into 𝑇

 This is called a suffix tree

suffix

prefix

Trie of suffixes: Example
 T = bananaban

Suffixes = {bananaban, ananaban, nanaban, anaban, naban, aban, ban, an, n, Λ}

na

an$
n

$
aban$

a

ananaban$
$

$
anaban$

a nb

bananaban$
$naba

a

ban$

n

na

n$
na

nanaban$
$

$
naban$

a nba

$

S = {bananaban$, ananaban$, nanaban$, anaban$,naban$,..., ban$, n$, $}

Trie of suffixes: Example

na

an$
n

$
aban$

a

ananaban$
$

$
anaban$

a nb

bananaban$
$naba

a

ban$

n

na

n$
na

nanaban$
$

$
naban$

a nba

$

0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T = $

$T[9..9]

 Store suffixes via indices

Trie of suffixes: Example

na

an$
n

$
aban$

a

ananaban$
$

$
anaban$

a nb

bananaban$
$naba

a

ban$

n

na

n$
na

nanaban$
$

$
naban$

a nba

$

0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T = a b a n $

T[5..9]

$T[9..9]

 Store suffixes via indices

Tries of suffixes

0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T =

T[9..9]

T[5..9]
n $a

T[7..9]

T[3..9]
$na

$
T[1..9]

nab

$
T[0..9]

naba

a

T[6..9]

n

na

T[8..9]

T[4..9]
n $a

$
T[2..9]

naba

 In actual implementation, each
leaf 𝑙 stores the start of its
suffix in variable 𝑙. 𝑠𝑡𝑎𝑟𝑡

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 9

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 5

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 3

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 1

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 7

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 6

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 0

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 8

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 4

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 2

Suffix tree

0

T[9..9]

1

T[5..9]

2

T[7..9]

3

T[3..9]

T[1..9]T[6..9]

1

3

T[0..9]

T[8..9]

2

T[4..9]

T[2..9]

 Suffix tree: compressed trie of suffixes

0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T =

 If 𝑃 occurs in the text, it is a prefix of one (or more) strings stored in the trie

 Have to modify search in a trie to allow search for a prefix

b a n a n a b a n $

Building Suffix Tree
 Building

 text 𝑇 has 𝑛 characters and 𝑛 + 1 suffixes

 can build suffix tree by inserting each suffix of 𝑇 into compressed trie

 takes Θ |Σ|𝑛2 time

 there is a way to build a suffix tree of 𝑇 in Θ(|Σ|𝑛) time

 beyond the course scope

 Pattern Matching

 essentially search for 𝑃 in compressed trie

 some changes needed, since 𝑃 may only be prefix of stored word

 run-time is

 𝑂 Σ 𝑚 , assuming each node stores children in a linked list

 𝑂 𝑚 , assuming each node stores children in an array

 Summary

 theoretically good, but construction is slow or complicated and lots of space-
overhead

 rarely used in practice

