Outline

1. Dictionaries and Balanced Search Trees
 - ADT Dictionary
 - Review: Binary Search Trees
 - AVL Trees
 - Insertion in AVL Trees
 - Restoring the AVL Property: Rotations
 - Deletion in AVL Trees
Outline

1. Dictionaries and Balanced Search Trees
 - ADT Dictionary
 - Review: Binary Search Trees
 - AVL Trees
 - Insertion in AVL Trees
 - Restoring the AVL Property: Rotations
 - Deletion in AVL Trees
Dictionary ADT

A dictionary is a collection of items, each of which contains

- a key
- some data,

and is called a key-value pair (KVP). Keys can be compared and are (typically) unique.

Operations:

- search\((k) \) (also called findElement\((k) \))
- insert\((k, v) \) (also called insertItem\((k, v) \))
- delete\((k) \) (also called removeElement\((k) \))
- optional: closestKeyBefore, join, isEmpty, size, etc.
Elementary Implementations

Common assumptions:
- Dictionary has n KVPs
- Each KVP uses constant space
- Keys can be compared in constant time

Unordered array or linked list
- $\text{search } \Theta(n)$
- $\text{insert } \Theta(1)$
- $\text{delete } \Theta(n)$ (need to search)

Ordered array
- $\text{search } \Theta(\log n)$ (via binary search)
- $\text{insert } \Theta(n)$
- $\text{delete } \Theta(n)$
Outline

1. Dictionaries and Balanced Search Trees
 - ADT Dictionary
 - Review: Binary Search Trees
 - AVL Trees
 - Insertion in AVL Trees
 - Restoring the AVL Property: Rotations
 - Deletion in AVL Trees
Binary Search Trees (review)

Structure Binary tree (all nodes have two (possibly empty) subtrees)
 Every node stores a KVP
 Empty subtrees usually not shown

Ordering Every key k in $T.left$ is less than the root key.
 Every key k in $T.right$ is greater than the root key.

In our examples we only show the keys, and we show them directly in the node. A more accurate picture would be [key = 15, <other info>].
BST Search and Insert

BST-search\((k) \) Start at root, compare \(k \) to current node.

Stop if found or subtree is empty, else recurse at subtree.

BST-insert\((k, v) \) Search for \(k \), then insert \((k, v) \) as new node

Example:
BST Delete

- First search for the node x that contains the key.
- If x is a **leaf** (both subtrees are empty), delete it.
- If x has one non-empty subtree, move child up
- Else, swap key at x with key at successor or predecessor node and then delete that node
Height of a BST

BST-search, BST-insert, BST-delete all have cost $\Theta(h)$, where $h = \text{height of the tree} = \text{max. path length from root to leaf}$

If n items are *BST-inserted* one-at-a-time, how big is h?

- **Worst-case:** $n - 1 = \Theta(n)$
- **Best-case:** $\Theta(\log n)$.

 Any binary tree with n nodes has height $\geq \log(n + 1) - 1$

- **Average-case:** Can show $\Theta(\log n)$
Outline

Dictionaries and Balanced Search Trees
- ADT Dictionary
- Review: Binary Search Trees
- AVL Trees
 - Insertion in AVL Trees
 - Restoring the AVL Property: Rotations
 - Deletion in AVL Trees
AVL Trees

Introduced by Adel’son-Vel’skiǐ and Landis in 1962, an AVL Tree is a BST with an additional **height-balance** property:

The heights of the left subtree L and right subtree R differ by at most 1. (The height of an empty tree is defined to be -1.)

At each non-empty node, we require $\text{height}(R) - \text{height}(L) \in \{-1, 0, 1\}$:

- -1 means the tree is **left-heavy**
- 0 means the tree is **balanced**
- $+1$ means the tree is **right-heavy**

- Need to store at each node the height of the subtree rooted at it
- Can show: It suffices to store $\text{height}(R) - \text{height}(L)$ at each node.
 - uses fewer bits
 - code gets more complicated, especially for deleting
AVL tree example

(The lower numbers indicate the height of the subtree.)
AVL tree example

Alternative: store balance factors (instead of height) at each node.
Height of an AVL tree

Theorem: An AVL tree on n nodes has $\Theta(\log n)$ height.

⇒ **AVL-search, AVL-insert, AVL-delete** all cost $\Theta(\log n)$ in the worst case!

Proof:

- Define $N(h)$ to be the *least* number of nodes in a height-h AVL tree.
- What is a recurrence relation for $N(h)$?
- What does this recurrence relation resolve to?

Caution, Goodrich & Tamassia uses a different height-definition, therefore their base cases are different from ours
Outline

1. Dictionaries and Balanced Search Trees
 - ADT Dictionary
 - Review: Binary Search Trees
 - AVL Trees
 - Insertion in AVL Trees
 - Restoring the AVL Property: Rotations
 - Deletion in AVL Trees
AVL insertion

To perform $AVL-insert(T, k, v)$:

- First, insert (k, v) into T with the usual BST insertion.
- We assume that this returns the new leaf z where the key was stored.
- Then, move up the tree from z, updating heights.
 - We assume for this that we have parent-links. This can be avoided if BST-Insert returns the full path to z.
- If the height difference becomes ± 2 at node z, then z is unbalanced. Must re-structure the tree to rebalance.
AVL insertion

\[
\text{AVL-insert}(r, k, v)\\
1. \quad z \leftarrow \text{BST-insert}(r, k, v)\\
2. \quad z.\text{height} \leftarrow 0\\
3. \quad \text{while} (z \text{ is not the root})\\
4. \quad z \leftarrow \text{parent of } z\\
5. \quad \text{if } (|z.\text{left.height} - z.\text{right.height}| > 1) \text{ then}\\
6. \quad \quad \text{Let } y \text{ be taller child of } z \text{ (break ties arbitrarily)}\\
7. \quad \quad \text{Let } x \text{ be taller child of } y\\
8. \quad \quad \quad \text{(break ties to prefer left-left or right-right)}\\
9. \quad \quad z \leftarrow \text{restructure}(x) // \text{ see later}\\
10. \quad \text{break} // \text{ can argue that we are done}\\
11. \quad \text{setHeightFromSubtrees}(z)
\]

setHeightFromSubtrees(u)

1. \quad \text{if } u \text{ is not an empty subtree}\\
2. \quad u.\text{height} \leftarrow 1 + \max\{u.\text{left.height}, u.\text{right.height}\}
AVL Insertion Example

Example:
Outline

1. Dictionaries and Balanced Search Trees
 - ADT Dictionary
 - Review: Binary Search Trees
 - AVL Trees
 - Insertion in AVL Trees
 - Restoring the AVL Property: Rotations
 - Deletion in AVL Trees
How to “fix” an unbalanced AVL tree

Note: there are many different BSTs with the same keys.

![Diagram of AVL trees]

Goal: change the *structure* among three nodes without changing the *order* and such that the subtree becomes balanced.
Right Rotation
This is a *right rotation* on node z:

```
rotate-right(z)
1.  y ← z.left, z.left ← y.right, y.right ← z
2.  setHeightFromSubtrees(z), setHeightFromSubtrees(y)
3.  return y  // returns new root of subtree
```
Why do we call this a rotation?
Left Rotation

Symmetrically, this is a *left rotation* on node z:

Again, only two edges need to be moved and two heights updated. Useful to fix right-right-right imbalance.
Double Right Rotation

This is a double right rotation on node z:

First, a left rotation at y.
Second, a right rotation at z.
Useful for left-right imbalance.
Double Left Rotation

Symmetrically, there is a *double left rotation* on node z:

First, a right rotation at y.
Second, a left rotation at z.
Useful for right-left imbalance.
Fixing a slightly-unbalanced AVL tree

```
restructure(x)
x: node of BST that has a grandparent

1. Let y and z be the parent and grandparent of x
2. case

   z:  // Right rotation
       y
       x
       return rotate-right(z)

   z:  // Double-right rotation
       y
       x
       z.left ← rotate-left(y)
       return rotate-right(z)

   z:  // Double-left rotation
       y
       x
       z.right ← rotate-right(y)
       return rotate-left(z)

   z:  // Left rotation
       y
       x
       return rotate-left(z)
```

Rule: The middle key of \(x, y, z \) becomes the new root.
AVL Insertion Example revisited

Example:

```
Example:

22
4?

10
3?

4
2
6
1
8
0

31
2
28
0
37
1
46
0
```
Outline

1. Dictionaries and Balanced Search Trees
 - ADT Dictionary
 - Review: Binary Search Trees
 - AVL Trees
 - Insertion in AVL Trees
 - Restoring the AVL Property: Rotations
 - Deletion in AVL Trees
AVL Deletion

Remove the key k with BST-delete.

Find node where structural change happened.

(This is not necessarily near the node that had k.)

Go back up to root, update heights, and rotate if needed.

AVL-delete(r, k)
1. $z \leftarrow BST$-delete(r, k)
2. // Assume z is the child of the BST node that was removed
3. `setHeightFromSubtrees(z)`
4. while (z is not the root)
5. $z \leftarrow$ parent of z
6. if ($|z.left.height - z.right.height| > 1$) then
7. Let y be taller child of z (break ties arbitrarily)
8. Let x be taller child of y (break ties as for Insert)
9. $z \leftarrow restructure(x)$
10. // **Always** continue up the path and fix if needed.
11. `setHeightFromSubtrees(z)`
AVL Deletion Example

Example:

```
    22
     4
    /   \
10     31
    /     \
6      32
    /    / \
4   8   14 28
  /  /
1 13 18 37
 /  /
16 16 46 0
```
AVL Tree Operations Runtime

AVL-search: Just like in BSTs, costs Θ(height)

AVL-insert: *BST-insert*, then check & update along path to new leaf
 - total cost Θ(height)
 - *AVL-fix* restores the height of the tree it fixes to what it was,
 - so *AVL-fix* will be called *at most once*.

AVL-delete: *BST-delete*, then check & update along path to deleted node
 - total cost Θ(height)
 - *AVL-fix* may be called Θ(height) times.

Total cost for all operations is Θ(height) = Θ(log n).