Outline

1. Introduction and Asymptotic Analysis
 - CS240 Overview
 - Algorithm Design
 - Analysis of Algorithms I
 - Asymptotic Notation
 - Analysis of Algorithms II
 - Example: Analysis of MergeSort
 - Helpful Formulas
Outline

1. Introduction and Asymptotic Analysis
 - CS240 Overview
 - Algorithm Design
 - Analysis of Algorithms I
 - Asymptotic Notation
 - Analysis of Algorithms II
 - Example: Analysis of MergeSort
 - Helpful Formulas
Course Objectives: What is this course about?

- When first learning to program, we emphasize **correctness**: does your program output the expected results?

- Starting with this course, we will also be concerned with **efficiency**: is your program using the computer’s resources (typically processor time) efficiently?

- We will study efficient methods of **storing**, **accessing**, and performing **operations** on large collections of data.

- Typical operations include: **inserting** new data items, **deleting** data items, **searching** for specific data items, **sorting**.

- **Motivating examples**: Digital Music Collection, English Dictionary
Course Objectives: What is this course about?

- We will consider various abstract data types (ADTs) and how to implement them efficiently using appropriate data structures.
- There is a strong emphasis on mathematical analysis in the course.
- Algorithms are presented using pseudocode and analyzed using order notation (big-Oh, etc.).
Course Topics

- big-Oh analysis
- priority queues and heaps
- sorting, selection
- binary search trees, AVL trees, B-trees
- skip lists
- hashing
- quadtrees, kd-trees
- range search
- tries
- string matching
- data compression
CS Background

Topics covered in previous courses with relevant sections in [Sedgewick]:

- arrays, linked lists (Sec. 3.2–3.4)
- strings (Sec. 3.6)
- stacks, queues (Sec. 4.2–4.6)
- abstract data types (Sec. 4-intro, 4.1, 4.8–4.9)
- recursive algorithms (5.1)
- binary trees (5.4–5.7)
- sorting (6.1–6.4)
- binary search (12.4)
- binary search trees (12.5)
- probability and expectations (Goodrich & Tamassia, Section 1.3.4)
Outline

1 Introduction and Asymptotic Analysis
 - CS240 Overview
 - Algorithm Design
 - Analysis of Algorithms I
 - Asymptotic Notation
 - Analysis of Algorithms II
 - Example: Analysis of MergeSort
 - Helpful Formulas
Problems (terminology)

First, we must introduce terminology so that we can precisely characterize what we mean by efficiency.

Problem: Given a problem instance, carry out a particular computational task.

Problem Instance: *Input* for the specified problem.

Problem Solution: *Output* (correct answer) for the specified problem instance.

Size of a problem instance: $\text{Size}(I)$ is a positive integer which is a measure of the size of the instance I.

Example: Sorting problem
Algorithms and Programs

Algorithm: An algorithm is a *step-by-step process* (e.g., described in pseudocode) for carrying out a series of computations, given an arbitrary problem instance I.

Algorithm solving a problem: An Algorithm A *solves* a problem Π if, for every instance I of Π, A finds (computes) a valid solution for the instance I in finite time.

Program: A program is an *implementation* of an algorithm using a specified computer language.

In this course, our emphasis is on algorithms (as opposed to programs or programming).
Algorithms and Programs

Pseudocode:

a method of communicating an algorithm to another person.

In contrast, a program is a method of communicating an algorithm to a computer.

Pseudocode

- omits obvious details, e.g. variable declarations,
- has limited if any error detection,
- sometimes uses English descriptions,
- sometimes uses mathematical notation.
For a problem Π, we can have several algorithms.

For an algorithm A solving Π, we can have several programs (implementations).

Algorithms in practice: Given a problem Π

1. Design an algorithm A that solves Π. \rightarrow **Algorithm Design**
2. Assess *correctness* and *efficiency* of A. \rightarrow **Algorithm Analysis**
3. If acceptable (correct and efficient), implement A.
Outline

1 Introduction and Asymptotic Analysis
 - CS240 Overview
 - Algorithm Design
 - Analysis of Algorithms I
 - Asymptotic Notation
 - Analysis of Algorithms II
 - Example: Analysis of MergeSort
 - Helpful Formulas
Efficiency of Algorithms/Programs

- How do we decide which algorithm or program is the most efficient solution to a given problem?

- In this course, we are primarily concerned with the amount of time a program takes to run. \(\rightarrow\) **Running Time**

- We also may be interested in the amount of memory the program requires. \(\rightarrow\) **Space**

- The amount of time and/or memory required by a program will depend on *Size(I)*, the size of the given problem instance *I*.
Running Time of Algorithms/Programs

First Option: *experimental studies*

- Write a program implementing the algorithm.
- Run the program with inputs of varying size and composition.
- Use a method like `clock()` (from `time.h`) to get an accurate measure of the actual running time.
- Plot/compare the results.
Running Time of Algorithms/Programs

Shortcomings of experimental studies

- Implementation may be complicated/costly.
- Timings are affected by many factors: hardware (processor, memory), software environment (OS, compiler, programming language), and human factors (programmer).
- We cannot test all inputs; what are good sample inputs?
- We cannot easily compare two algorithms/programs.

We want a framework that:

- Does not require implementing the algorithm.
- Is independent of the hardware/software environment.
- Takes into account all input instances.

We need some simplifications.
Overview of Algorithm Analysis

We will develop several aspects of algorithm analysis in the next slides.

- Algorithms are presented in structured high-level *pseudocode* which is language-independent.
- Analysis of algorithms is based on an *idealized computer model*.
- The efficiency of an algorithm (with respect to time) is measured in terms of its *growth rate* (this is called the *complexity* of the algorithm).
Running Time Simplifications

Overcome dependency on hardware/software

- Express algorithms using *pseudo-code*
- Instead of time, count the number of *primitive operations*
- Implicit assumption: primitive operations have fairly similar, though different, running time on different systems

Random Access Machine (RAM) Model:

- The *random access machine* has a set of memory cells, each of which stores one item (word) of data.
- Any *access to a memory location* takes constant time.
- Any *primitive operation* takes constant time.
- The *running time* of a program can be computed to be the number of memory accesses plus the number of primitive operations.

This is an idealized model, so these assumptions may not be valid for a “real” computer.
Running Time Simplifications

Simplify Comparisons

- Example: Compare $100n$ with $10n^2$
- Idea: Use order notation
- Informally: ignore constants and lower order terms

We will simplify our analysis by considering the behaviour of algorithms for large inputs sizes.
Outline

1. Introduction and Asymptotic Analysis
 - CS240 Overview
 - Algorithm Design
 - Analysis of Algorithms I
 - Asymptotic Notation
 - Analysis of Algorithms II
 - Example: Analysis of MergeSort
 - Helpful Formulas
Order Notation

O-notation: $f(n) \in O(g(n))$ if there exist constants $c > 0$ and $n_0 > 0$ such that $|f(n)| \leq c |g(n)|$ for all $n \geq n_0$.

Example: $f(n) = 75n + 500$ and $g(n) = 5n^2$ (e.g. $c = 1$, $n_0 = 20$)

![Graph showing the comparison of two functions](image.png)

Note: The absolute value signs in the definition are irrelevant for analysis of run-time or space, but are useful in other applications of asymptotic notation.
Example of Order Notation

In order to prove that $2n^2 + 3n + 11 \in O(n^2)$ from first principles, we need to find c and n_0 such that the following condition is satisfied:

$$0 \leq 2n^2 + 3n + 11 \leq c n^2 \text{ for all } n \geq n_0.$$

Note that not all choices of c and n_0 will work.
Asymptotic Lower Bound

- We have \(2n^2 + 3n + 11 \in O(n^2) \).
- But we also have \(2n^2 + 3n + 11 \in O(n^{10}) \).
- We want a **tight** asymptotic bound.

Ω-notation: \(f(n) \in \Omega(g(n)) \) if there exist constants \(c > 0 \) and \(n_0 > 0 \) such that \(c \mid g(n) \mid \leq \mid f(n) \mid \) for all \(n \geq n_0 \).

Θ-notation: \(f(n) \in \Theta(g(n)) \) if there exist constants \(c_1, c_2 > 0 \) and \(n_0 > 0 \) such that \(c_1 \mid g(n) \mid \leq \mid f(n) \mid \leq c_2 \mid g(n) \mid \) for all \(n \geq n_0 \).

\[
f(n) \in \Theta(g(n)) \iff f(n) \in O(g(n)) \text{ and } f(n) \in \Omega(g(n))
\]
Example of Order Notation

Prove that \(f(n) = 2n^2 + 3n + 11 \in \Omega(n^2) \) from first principles.

Prove that \(\frac{1}{2}n^2 - 5n \in \Omega(n^2) \) from first principles.
Strictly smaller/larger asymptotic bounds

- We have $f(n) = 2n^2 + 3n + 11 \in \Theta(n^2)$.
- How to express that $f(n)$ is asymptotically strictly smaller than n^3?

o-notation: $f(n) \in o(g(n))$ if for all constants $c > 0$, there exists a constant $n_0 > 0$ such that $|f(n)| < c |g(n)|$ for all $n \geq n_0$.

ω-notation: $f(n) \in \omega(g(n))$ if $g(n) \in o(f(n))$.

- Rarely proved from first principles.
Relationships between Order Notations

- $f(n) \in \Theta(g(n)) \iff g(n) \in \Theta(f(n))$
- $f(n) \in O(g(n)) \iff g(n) \in \Omega(f(n))$
- $f(n) \in o(g(n)) \iff g(n) \in \omega(f(n))$

- $f(n) \in o(g(n)) \implies f(n) \in O(g(n))$
- $f(n) \in o(g(n)) \implies f(n) \not\in \Omega(g(n))$
- $f(n) \in \omega(g(n)) \implies f(n) \in \Omega(g(n))$
- $f(n) \in \omega(g(n)) \implies f(n) \not\in O(g(n))$
Algebra of Order Notations

“Identity” rule: $f(n) \in \Theta(f(n))$

“Maximum” rules: Suppose that $f(n) > 0$ and $g(n) > 0$ for all $n \geq n_0$. Then:

- $O(f(n) + g(n)) = O(\max\{f(n), g(n)\})$
- $\Omega(f(n) + g(n)) = \Omega(\max\{f(n), g(n)\})$

Transitivity:

- If $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$ then $f(n) \in O(h(n))$.
- If $f(n) \in \Omega(g(n))$ and $g(n) \in \Omega(h(n))$ then $f(n) \in \Omega(h(n))$.
Techniques for Order Notation

Suppose that $f(n) > 0$ and $g(n) > 0$ for all $n \geq n_0$. Suppose that

$$L = \lim_{n \to \infty} \frac{f(n)}{g(n)}$$

(in particular, the limit exists).

Then

$$f(n) \in \begin{cases}
 o(g(n)) & \text{if } L = 0 \\
 \Theta(g(n)) & \text{if } 0 < L < \infty \\
 \omega(g(n)) & \text{if } L = \infty.
\end{cases}$$

The required limit can often be computed using \textit{l'Hôpital’s rule}. Note that this result gives \textit{sufficient} (but not necessary) conditions for the stated conclusions to hold.
Example 1

Let $f(n)$ be a polynomial of degree $d \geq 0$:

$$f(n) = c_d n^d + c_{d-1} n^{d-1} + \cdots + c_1 n + c_0$$

for some $c_d > 0$.

Then $f(n) \in \Theta(n^d)$:
Example 2

Prove that $n(2 + \sin n\pi/2)$ is $\Theta(n)$. Note that $\lim_{n \to \infty} (2 + \sin n\pi/2)$ does not exist.
Example 2

Prove that \(n(2 + \sin n\pi/2) \) is \(\Theta(n) \). Note that \(\lim_{n \to \infty} (2 + \sin n\pi/2) \) does not exist.
Growth Rates

- If \(f(n) \in \Theta(g(n)) \), then the growth rates of \(f(n) \) and \(g(n) \) are the same.
- If \(f(n) \in o(g(n)) \), then we say that the growth rate of \(f(n) \) is less than the growth rate of \(g(n) \).
- If \(f(n) \in \omega(g(n)) \), then we say that the growth rate of \(f(n) \) is greater than the growth rate of \(g(n) \).
- Typically, \(f(n) \) may be “complicated” and \(g(n) \) is chosen to be a very simple function.
Example 3

Compare the growth rates of $\log n$ and n.

Now compare the growth rates of $(\log n)^c$ and n^d (where $c > 0$ and $d > 0$ are arbitrary numbers).
Common Growth Rates

Commonly encountered growth rates in analysis of algorithms include the following (in increasing order of growth rate):

- $\Theta(1)$ (*constant complexity*),
- $\Theta(\log n)$ (*logarithmic complexity*),
- $\Theta(n)$ (*linear complexity*),
- $\Theta(n \log n)$ (*linearithmic*),
- $\Theta(n \log^k n)$, for some constant k (*quasi-linear*),
- $\Theta(n^2)$ (*quadratic complexity*),
- $\Theta(n^3)$ (*cubic complexity*),
- $\Theta(2^n)$ (*exponential complexity*).
How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of the problem instance doubles (i.e., $n \rightarrow 2n$).

- **constant complexity**: $T(n) = c$
- **logarithmic complexity**: $T(n) = c \log n$
- **linear complexity**: $T(n) = cn$
- **linearithmic $\Theta(n \log n)$**: $T(n) = cn \log n$
- **quadratic complexity**: $T(n) = cn^2$
- **cubic complexity**: $T(n) = cn^3$
- **exponential complexity**: $T(n) = c2^n$
How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of the problem instance doubles (i.e., $n \rightarrow 2n$).

- **constant complexity**: $T(n) = c \quad \Rightarrow \quad T(2n) = c$.
- **logarithmic complexity**: $T(n) = c \log n$
- **linear complexity**: $T(n) = cn$
- **linearithmic $\Theta(n \log n)$**: $T(n) = cn \log n$
- **quadratic complexity**: $T(n) = cn^2$
- **cubic complexity**: $T(n) = cn^3$
- **exponential complexity**: $T(n) = c2^n$
How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of the problem instance doubles (i.e., \(n \rightarrow 2n \)).

- **constant complexity:** \(T(n) = c \) \(\implies T(2n) = c \).
- **logarithmic complexity:** \(T(n) = c \log n \) \(\implies T(2n) = T(n) + c \).
- **linear complexity:** \(T(n) = cn \)
- **linearithmic \(\Theta(n \log n) \):** \(T(n) = cn \log n \)
- **quadratic complexity:** \(T(n) = cn^2 \)
- **cubic complexity:** \(T(n) = cn^3 \)
- **exponential complexity:** \(T(n) = c2^n \)
How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of the problem instance doubles (i.e., $n \rightarrow 2n$).

- **constant complexity:** $T(n) = c$ \implies T(2n) = c.$
- **logarithmic complexity:** $T(n) = c \log n$ \implies T(2n) = T(n) + c.$
- **linear complexity:** $T(n) = cn$ \implies T(2n) = 2T(n).$
- **linearithmic $\Theta(n \log n)$:** $T(n) = cn \log n$
- **quadratic complexity:** $T(n) = cn^2$
- **cubic complexity:** $T(n) = cn^3$
- **exponential complexity:** $T(n) = c2^n$
How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of the problem instance doubles (i.e., $n \rightarrow 2n$).

- **constant complexity:** $T(n) = c \quad \leadsto \quad T(2n) = c$.
- **logarithmic complexity:** $T(n) = c \log n \quad \leadsto \quad T(2n) = T(n) + c$.
- **linear complexity:** $T(n) = cn \quad \leadsto \quad T(2n) = 2T(n)$.
- **linearithmic $\Theta(n \log n)$:** $T(n) = cn \log n \quad \leadsto \quad T(2n) = 2T(n) + 2cn$.
- **quadratic complexity:** $T(n) = cn^2$.
- **cubic complexity:** $T(n) = cn^3$.
- **exponential complexity:** $T(n) = c2^n$.
How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of the problem instance doubles (i.e., $n \rightarrow 2n$).

- **constant complexity**: $T(n) = c$ $\implies T(2n) = c$.
- **logarithmic complexity**: $T(n) = c \log n$ $\implies T(2n) = T(n) + c$.
- **linear complexity**: $T(n) = cn$ $\implies T(2n) = 2T(n)$.
- **linearithmic $\Theta(n \log n)$**: $T(n) = cn \log n$ $\implies T(2n) = 2T(n) + 2cn$.
- **quadratic complexity**: $T(n) = cn^2$ $\implies T(2n) = 4T(n)$.
- **cubic complexity**: $T(n) = cn^3$
- **exponential complexity**: $T(n) = c2^n$
How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of the problem instance doubles (i.e., $n \rightarrow 2n$).

- **constant complexity**: $T(n) = c \quad \leadsto \quad T(2n) = c$.
- **logarithmic complexity**: $T(n) = c \log n \quad \leadsto \quad T(2n) = T(n) + c$.
- **linear complexity**: $T(n) = cn \quad \leadsto \quad T(2n) = 2T(n)$.
- **linearithmic $\Theta(n \log n)$**: $T(n) = cn \log n \quad \leadsto \quad T(2n) = 2T(n) + 2cn$.
- **quadratic complexity**: $T(n) = cn^2 \quad \leadsto \quad T(2n) = 4T(n)$.
- **cubic complexity**: $T(n) = cn^3 \quad \leadsto \quad T(2n) = 8T(n)$.
- **exponential complexity**: $T(n) = c2^n$.
How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of the problem instance doubles (i.e., $n \rightarrow 2n$).

- **constant complexity**: $T(n) = c \quad \implies T(2n) = c$.
- **logarithmic complexity**: $T(n) = c \log n \quad \implies T(2n) = T(n) + c$.
- **linear complexity**: $T(n) = cn \quad \implies T(2n) = 2T(n)$.
- **linearithmic $\Theta(n \log n)$**: $T(n) = cn \log n \quad \implies T(2n) = 2T(n) + 2cn$.
- **quadratic complexity**: $T(n) = cn^2 \quad \implies T(2n) = 4T(n)$.
- **cubic complexity**: $T(n) = cn^3 \quad \implies T(2n) = 8T(n)$.
- **exponential complexity**: $T(n) = c2^n \quad \implies T(2n) = \frac{(T(n))^2}{c}$.
1 Introduction and Asymptotic Analysis
 - CS240 Overview
 - Algorithm Design
 - Analysis of Algorithms I
 - Asymptotic Notation
 - Analysis of Algorithms II
 - Example: Analysis of MergeSort
 - Helpful Formulas
Techniques for Algorithm Analysis

- Goal: Use asymptotic notation to simplify run-time analysis.
- Running time of an algorithm depends on the *input size* n.

```plaintext
Test1(n)
1. sum ← 0
2. for $i \leftarrow 1$ to $n$ do
3. for $j \leftarrow i$ to $n$ do
4. sum ← sum + $(i - j)^2$
5. return sum
```

- Identify *elementary operations* that require $\Theta(1)$ time.
- The complexity of a loop is expressed as the *sum* of the complexities of each iteration of the loop.
- Nested loops: start with the innermost loop and proceed outwards. This gives *nested summations*.
Techniques for Algorithm Analysis

Two general strategies are as follows.

- Use Θ-bounds *throughout the analysis* and obtain a Θ-bound for the complexity of the algorithm.
- Prove a O-bound and a *matching* Ω-bound *separately*.

Use upper bounds (for O-bounds) and lower bounds (for Ω-bound) early and frequently.
This may be easier because upper/lower bounds are easier to sum.

Test2(A, n)
1. $\text{max} \leftarrow 0$
2. for $i \leftarrow 1$ to n
 3. for $j \leftarrow i$ to n
 4. $\text{sum} \leftarrow 0$
 5. for $k \leftarrow i$ to j
 6. $\text{sum} \leftarrow A[k]$
 7. return max
Complexity of Algorithms

- Algorithm can have different running times on two instances of the same size.

\[
\text{Test3}(A, n)
\]
\[
\begin{align*}
A: \text{array of size } n \\
1. & \quad \textbf{for } i \leftarrow 1 \textbf{ to } n - 1 \textbf{ do} \\
2. & \quad j \leftarrow i \\
3. & \quad \textbf{while } j > 0 \text{ and } A[j] > A[j - 1] \textbf{ do} \\
4. & \quad \text{swap } A[j] \text{ and } A[j - 1] \\
5. & \quad j \leftarrow j - 1
\end{align*}
\]

Let \(T_A(I) \) denote the running time of an algorithm \(A \) on instance \(I \).

Worst-case complexity of an algorithm: take the worst \(I \)

Average-case complexity of an algorithm: average over \(I \)
Complexity of Algorithms

Worst-case complexity of an algorithm: The worst-case running time of an algorithm A is a function $f : \mathbb{Z}^+ \rightarrow \mathbb{R}$ mapping n (the input size) to the longest running time for any input instance of size n:

$$T_A(n) = \max \{T_A(I) : \text{Size}(I) = n\}.$$

Average-case complexity of an algorithm: The average-case running time of an algorithm A is a function $f : \mathbb{Z}^+ \rightarrow \mathbb{R}$ mapping n (the input size) to the average running time of A over all instances of size n:

$$T_A^{\text{avg}}(n) = \frac{1}{|\{I : \text{Size}(I) = n\}|} \sum_{\{I:\text{Size}(I)=n\}} T_A(I).$$
O-notation and Complexity of Algorithms

- It is important not to try and make *comparisons* between algorithms using O-notation.

- For example, suppose algorithm A_1 and A_2 both solve the same problem, A_1 has worst-case run-time $O(n^3)$ and A_2 has worst-case run-time $O(n^2)$.

- Observe that we *cannot* conclude that A_2 is more efficient than A_1 for all input!

1. The worst-case run-time may only be achieved on some instances.
2. O-notation is an upper bound. A_1 may well have worst-case run-time $O(n)$. If we want to be able to compare algorithms, we should always use Θ-notation.
1 Introduction and Asymptotic Analysis
 - CS240 Overview
 - Algorithm Design
 - Analysis of Algorithms I
 - Asymptotic Notation
 - Analysis of Algorithms II
 - Example: Analysis of MergeSort
 - Helpful Formulas
Design of MergeSort

Input: Array A of n integers

- **Step 1:** We split A into two subarrays: A_L consists of the first $\left\lceil \frac{n}{2} \right\rceil$ elements in A and A_R consists of the last $\left\lfloor \frac{n}{2} \right\rfloor$ elements in A.

- **Step 2:** Recursively run MergeSort on A_L and A_R.

- **Step 3:** After A_L and A_R have been sorted, use a function $Merge$ to merge them into a single sorted array.
MergeSort

To avoid copying sub-arrays, the recursion uses parameters that indicate the range of the array that needs to be sorted.

\[
\text{MergeSort}(A, \ell \leftarrow 0, r \leftarrow n - 1) \\
A: \text{array of size } n, 0 \leq \ell \leq r \leq n - 1 \\
1. \quad \text{if } (r \leq \ell) \text{ then} \\
2. \quad \text{return} \\
3. \quad \text{else} \\
4. \quad m = (r + \ell)/2 \\
5. \quad \text{MergeSort}(A, \ell, m) \\
6. \quad \text{MergeSort}(A, m + 1, r) \\
7. \quad \text{Merge}(A, \ell, m, r)
\]
Merge

\[\text{Merge}(A, \ell, m, r) \]

\(A[0..n-1]\) is an array, \(A[\ell..m]\) is sorted, \(A[m+1..r]\) is sorted

1. initialize auxiliary array \(S[0..n-1]\)
2. copy \(A[\ell..r]\) into \(S[\ell..r]\)
3. int \(i_L \leftarrow \ell\); int \(i_R \leftarrow m+1\);
4. for \((k \leftarrow \ell; k \leq r; k++)\) do
5. \hspace{1em} if \((i_L > m)\) \(A[k] \leftarrow S[i_R++]\)
6. \hspace{1em} elseif \((i_R > r)\) \(A[k] \leftarrow S[i_L++]\)
7. \hspace{1em} elseif \((S[i_L] \leq S[i_R])\) \(A[k] \leftarrow S[i_L++]\)
8. \hspace{1em} else \(A[k] \leftarrow S[i_R++]\)

Sedgewick’s code is slightly more complicated to avoid having to check whether \(i_R\) and \(i_L\) are out-of-boundary.

\text{Merge} takes time \(\Theta(r - l + 1)\), i.e., \(\Theta(n)\) time for merging \(n\) elements.
Analysis of MergeSort

Let $T(n)$ denote the time to run MergeSort on an array of length n.

- Step 1 takes time $\Theta(n)$
- Step 2 takes time $T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor)$
- Step 3 takes time $\Theta(n)$

The recurrence relation for $T(n)$ is as follows:

$$T(n) = \begin{cases}
T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n) & \text{if } n > 1 \\
\Theta(1) & \text{if } n = 1.
\end{cases}$$

It suffices to consider the following exact recurrence, with constant factor c replacing Θ’s:

$$T(n) = \begin{cases}
T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + cn & \text{if } n > 1 \\
c & \text{if } n = 1.
\end{cases}$$
Analysis of MergeSort

- The following is the corresponding sloppy recurrence (it has floors and ceilings removed):

\[
T(n) = \begin{cases}
2 \cdot T\left(\frac{n}{2}\right) + cn & \text{if } n > 1 \\
c & \text{if } n = 1.
\end{cases}
\]

- The exact and sloppy recurrences are identical when \(n \) is a power of 2.
- The recurrence can easily be solved by various methods when \(n = 2^j \). The solution has growth rate \(T(n) \in \Theta(n \log n) \).
- It is possible to show that \(T(n) \in \Theta(n \log n) \) for all \(n \) by analyzing the exact recurrence.

<table>
<thead>
<tr>
<th>Recursion</th>
<th>resolves to</th>
<th>example</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = T(n/2) + \Theta(1)$</td>
<td>$T(n) \in \Theta(\log n)$</td>
<td>Binary search</td>
</tr>
<tr>
<td>$T(n) = 2T(n/2) + \Theta(n)$</td>
<td>$T(n) \in \Theta(n \log n)$</td>
<td>Mergesort</td>
</tr>
<tr>
<td>$T(n) = 2T(n/2) + \Theta(\log n)$</td>
<td>$T(n) \in \Theta(n)$</td>
<td>Heapify (\rightarrow later)</td>
</tr>
<tr>
<td>$T(n) = T(cn) + \Theta(n)$ for some $0 < c < 1$</td>
<td>$T(n) \in \Theta(n)$</td>
<td>Selection (\rightarrow later)</td>
</tr>
<tr>
<td>$T(n) = 2T(n/4) + \Theta(1)$</td>
<td>$T(n) \in \Theta(\sqrt{n})$</td>
<td>Range Search (\rightarrow later)</td>
</tr>
<tr>
<td>$T(n) = T(\sqrt{n}) + \Theta(1)$</td>
<td>$T(n) \in \Theta(\log \log n)$</td>
<td>Interpolation Search (\rightarrow later)</td>
</tr>
</tbody>
</table>

- Once you know the result, it is (usually) easy to prove by induction.
- Many more recursions, and some methods to find the result, in cs341.
Outline

1 Introduction and Asymptotic Analysis
 • CS240 Overview
 • Algorithm Design
 • Analysis of Algorithms I
 • Asymptotic Notation
 • Analysis of Algorithms II
 • Example: Analysis of MergeSort
 • Helpful Formulas
Order Notation Summary

\textbf{O-notation:} \(f(n) \in O(g(n)) \) if there exist constants \(c > 0 \) and \(n_0 > 0 \) such that \(|f(n)| \leq c|g(n)| \) for all \(n \geq n_0 \).

\textbf{Ω-notation:} \(f(n) \in \Omega(g(n)) \) if there exist constants \(c > 0 \) and \(n_0 > 0 \) such that \(c|g(n)| \leq |f(n)| \) for all \(n \geq n_0 \).

\textbf{Θ-notation:} \(f(n) \in \Theta(g(n)) \) if there exist constants \(c_1, c_2 > 0 \) and \(n_0 > 0 \) such that \(c_1|g(n)| \leq |f(n)| \leq c_2|g(n)| \) for all \(n \geq n_0 \).

\textbf{o-notation:} \(f(n) \in o(g(n)) \) if for all constants \(c > 0 \), there exists a constant \(n_0 > 0 \) such that \(|f(n)| < c|g(n)| \) for all \(n \geq n_0 \).

\textbf{ω-notation:} \(f(n) \in \omega(g(n)) \) if for all constants \(c > 0 \), there exists a constant \(n_0 > 0 \) such that \(c|g(n)| < |f(n)| \) for all \(n \geq n_0 \).
Useful Sums

Arithmetic sequence:

\[\sum_{i=0}^{n-1} i = ???\]

\[\sum_{i=0}^{n-1} (a + di) = na + \frac{dn(n-1)}{2} \in \Theta(n^2) \text{ if } d \neq 0.\]

Geometric sequence:

\[\sum_{i=0}^{n-1} 2^i = ???\]

\[\sum_{i=0}^{n-1} a r^i = \begin{cases} a \frac{r^n - 1}{r - 1} & \in \Theta(r^{n-1}) \text{ if } r > 1 \\ na & \in \Theta(n) \text{ if } r = 1 \\ a \frac{1 - r^n}{1 - r} & \in \Theta(1) \text{ if } 0 < r < 1. \end{cases}\]

Harmonic sequence:

\[\sum_{i=1}^{n} \frac{1}{i} = ???\]

\[H_n := \sum_{i=1}^{n} \frac{1}{i} = \ln n + \gamma + o(1) \in \Theta(\log n)\]

A few more:

\[\sum_{i=1}^{n} \frac{1}{i^2} = ???\]

\[\sum_{i=1}^{n} \frac{1}{i^2} = \frac{\pi^2}{6} \in \Theta(1)\]

\[\sum_{i=1}^{n} i^k = ???\]

\[\sum_{i=1}^{n} i^k \in \Theta(n^{k+1}) \text{ for } k \geq 0\]
Useful Math Facts

Logarithms:
- $c = \log_b(a)$ means $b^c = a$. E.g. $n = 2^{\log n}$.
- $\log(a)$ (in this course) means $\log_{2}(a)$
- $\log(a \cdot c) = \log(a) + \log(c)$, $\log(a^c) = c \log(a)$,
- $\log_b(a) = \frac{\log_c a}{\log_c b} = \frac{1}{\log_a(b)}$.
- $a^{\log_b c} = c^{\log_b a}$
- $\ln(x) = \text{natural log} = \log_e(x)$, $\frac{d}{dx} \ln x = \frac{1}{x}$

Factorial:
- $n! := n(n-1)(n-2) \cdots 2 \cdot 1 = \# \text{ ways to permute } n \text{ elements}$
- $\log(n!) = \log n + \log(n-1) + \cdots + \log 2 + \log 1 \in \Theta(n \log n)$

Probability and moments: