Outline

1. Dictionaries with Lists revisited
 - Dictionary ADT: Implementations thus far
 - Skip Lists
 - Re-ordering Items
Outline

1. Dictionaries with Lists revisited
 - Dictionary ADT: Implementations thus far
 - Skip Lists
 - Re-ordering Items
Dictionary ADT: Implementations thus far

A *dictionary* is a collection of *key-value pairs* (KVPs), supporting operations *search*, *insert*, and *delete*.

Realizations

- **Unordered array or linked list**: $\Theta(1)$ insert, $\Theta(n)$ search and delete
- **Ordered array**: $\Theta(\log n)$ search, $\Theta(n)$ insert and delete
- **Binary search trees**: $\Theta(\text{height})$ search, insert and delete
- **Balanced search trees** (AVL trees): $\Theta(\log n)$ search, insert, and delete

Improvements/Simplifications?

Can show: The average-case height of binary search trees (over all possible insertion sequences) is $O(\log n)$.
Dictionary ADT: Implementations thus far

A dictionary is a collection of key-value pairs (KVPs), supporting operations search, insert, and delete.

Realizations

- **Unordered array or linked list:** $\Theta(1)$ insert, $\Theta(n)$ search and delete
- **Ordered array:** $\Theta(\log n)$ search, $\Theta(n)$ insert and delete
- **Binary search trees:** $\Theta(\text{height})$ search, insert and delete
- **Balanced search trees** (AVL trees):
 $\Theta(\log n)$ search, insert, and delete

Improvements/Simplifications?

- **Can show:** The average-case height of binary search trees (over all possible insertion sequences) is $O(\log n)$.
- How can we shift the average-case to expected height via randomization?
Outline

1. Dictionaries with Lists revisited
 - Dictionary ADT: Implementations thus far
 - Skip Lists
 - Re-ordering Items
Skip Lists

- A hierarchy S of ordered linked lists (levels) S_0, S_1, \cdots, S_h:
 - Each list S_i contains the special keys $-\infty$ and $+\infty$ (sentinels)
 - List S_0 contains the KVPs of S in non-decreasing order.
 (The other lists store only keys, or links to nodes in S_0.)
 - Each list is a subsequence of the previous one, i.e., $S_0 \supseteq S_1 \supseteq \cdots \supseteq S_h$
 - List S_h contains only the sentinels

- Each KVP belongs to a tower of nodes
Skip Lists

- A hierarchy S of ordered linked lists (levels) S_0, S_1, \cdots, S_h:
 - Each list S_i contains the special keys $-\infty$ and $+\infty$ (sentinels)
 - List S_0 contains the KVPs of S in non-decreasing order. (The other lists store only keys, or links to nodes in S_0.)
 - Each list is a subsequence of the previous one, i.e., $S_0 \supseteq S_1 \supseteq \cdots \supseteq S_h$
 - List S_h contains only the sentinels

Each KVP belongs to a *tower* of nodes
Skip Lists

- A hierarchy S of ordered linked lists (levels) S_0, S_1, \cdots, S_h:
 - Each list S_i contains the special keys $-\infty$ and $+\infty$ (sentinels)
 - List S_0 contains the KVPs of S in non-decreasing order.
 (The other lists store only keys, or links to nodes in S_0.)
 - Each list is a subsequence of the previous one, i.e., $S_0 \supseteq S_1 \supseteq \cdots \supseteq S_h$
 - List S_h contains only the sentinels

- The skip list consists of a reference to the topmost left node.
- Each node p has references to $\text{after}(p), \text{below}(p)$
- Each KVP belongs to a tower of nodes
Search in Skip Lists

\[\text{skip-search}(L, k)\]

1. \(p \leftarrow \text{topmost left node of } L \)
2. \(P \leftarrow \text{stack of nodes, initially containing } p \)
3. \(\text{while } \text{below}(p) \neq \text{null} \) \(\text{do} \)
4. \(p \leftarrow \text{below}(p) \)
5. \(\text{while } \text{key}(\text{after}(p)) < k \) \(\text{do} \)
6. \(p \leftarrow \text{after}(p) \)
7. \(\text{push } p \text{ onto } P \)
8. \(\text{return } P \)

- \(P \) collects \textit{predecessors} of \(k \) at level \(S_0, S_1, \ldots \) (These will be needed for insert/delete.)
- \(k \) is in \(L \) if and only if \(\text{after}(\text{top}(P)) \) has key \(k \)
Example: Search in Skip Lists

Example: Skip-Search($S, 87$)

\[
S_3 \quad -\infty \\
S_2 \quad -\infty \quad 65 \quad +\infty \\
S_1 \quad -\infty \quad 37 \quad 65 \quad 83 \quad 94 \quad +\infty \\
S_0 \quad -\infty \quad (23, v) \quad (37, v) \quad (44, v) \quad (65, v) \quad (69, v) \quad (79, v) \quad (83, v) \quad (87, v) \quad (94, v) \quad +\infty
\]
Example: Search in Skip Lists

Example: Skip-Search($S, 87$)
Example: Search in Skip Lists

Example: Skip-Search($S, 87$)
Example: Search in Skip Lists

Example: Skip-Search\((S, 87)\)
Example: Search in Skip Lists

Example: Skip-Search($S, 87$)
Insert in Skip Lists

Skip-Insert(S, k, v)

- Randomly repeatedly toss a coin until you get tails
- Let i the number of times the coin came up heads; this will be the height of the tower of k

\[
P(\text{tower of key } k \text{ has height } \geq i) = \left(\frac{1}{2}\right)^i\]

- Increase height of skip list, if needed, to have $h > i$ levels.
- Search for k with **Skip-Search**(S, k) to get stack P. The top i items of P are the predecessors p_0, p_1, \cdots, p_i of where k should be in each list S_0, S_1, \cdots, S_i
- Insert (k, v) after p_0 in S_0, and k after p_j in S_j for $1 \leq j \leq i$
Example: Insert in Skip Lists

Example: \(\text{Skip-Insert}(S, 52, v) \)
Coin tosses: H, T \(\Rightarrow \) \(i = 1 \)
Example: Insert in Skip Lists

Example: Skip-Insert($S, 52, v$)
Coin tosses: H,T ⇒ $i = 1$

$Skip-Search(S, 52)$
Example: Insert in Skip Lists

Example: Skip-Insert($S, 52, v$)
Coin tosses: H,T $\Rightarrow i = 1$

$Skip-Search(S, 52)$
Example 2: Insert in Skip Lists

Example: Skip-Insert\((S, 100, v)\)
Coin tosses: H,H,H,T \(\Rightarrow i = 3\)
Example 2: Insert in Skip Lists

Example: Skip-Insert\((S, 100, v)\)
Coin tosses: H,H,H,T \(\Rightarrow i = 3\)
Height increase
Example 2: Insert in Skip Lists

Example: Skip-Insert($S, 100, v$)

Coin tosses: H,H,H,T $\Rightarrow i = 3$

Height increase

$\text{Skip-Search}(S, 100)$
Example 2: Insert in Skip Lists

Example: Skip-Insert($S, 100, v$)
Coin tosses: H, H, H, T $\Rightarrow i = 3$
Height increase
$Skip$-$Search(S, 100)$
Delete in Skip Lists

Skip-Delete(S, k)

- Search for k with $Skip-Search(S, k)$ to get stack P.
- P contains all predecessors p_0, p_1, \ldots, p_h of k in lists S_0, \ldots, S_h.
- For each $0 \leq j \leq h$, if $\text{key}(\text{after}(p_j)) = k$, then remove $\text{after}(p_j)$ from list S_j.
- Remove all but one of the lists S_i that contain only the two special keys.
Example: Delete in Skip Lists

Example: Skip-Delete($S, 65$)
Example: Delete in Skip Lists

Example: Skip-Delete\((S, 65)\)
Skip-Search\((S, 65)\)
Example: Delete in Skip Lists

Example: Skip-Delete \((S, 65)\)

Skip-Search \((S, 65)\)
Example: Delete in Skip Lists

Example: Skip-Delete\((S, 65)\)
Skip-Search\((S, 65)\)
Height decrease
Summary of Skip Lists

- **Expected space usage:** $O(n)$
- **Expected height:** $O(\log n)$
 A skip list with n items has height at most $3\log n$ with probability at least $1 - 1/n^2$

- **Crucial for all operations:**
 - How often do we drop down (execute $p \leftarrow \text{below}(p)$)?
 - How often do we scan forward (execute $p \leftarrow \text{after}(p)$)?

- **Skip-Search:** $O(\log n)$ expected time
 - # drop-downs = height
 - expected # scan-forwards is ≤ 2 in each level

- **Skip-Insert:** $O(\log n)$ expected time
- **Skip-Delete:** $O(\log n)$ expected time

Skip lists are fast and simple to implement in practice
Outline

1. Dictionaries with Lists revisited
 - Dictionary ADT: Implementations thus far
 - Skip Lists
 - Re-ordering Items
Re-ordering Items

- Recall: Unordered array implementation of ADT Dictionary
 \[\text{search: } \Theta(n), \quad \text{insert: } \Theta(1), \quad \text{delete: } \Theta(1) \text{ (after a search)}\]

- Arrays are a very simple and popular implementation. Can we do something to make search more effective in practice?

No: if items are accessed equally likely
Yes: otherwise (we have a probability distribution of the items)

▶ Intuition: Frequently accessed items should be in the front.
▶ Two cases: Do we know the access distribution beforehand or not?

For short lists or extremely unbalanced distributions this may be faster than AVL trees or Skip Lists, and much easier to implement.
Re-ordering Items

- Recall: Unordered array implementation of ADT Dictionary
 - *search*: $\Theta(n)$, *insert*: $\Theta(1)$, *delete*: $\Theta(1)$ (after a search)
- Arrays are a very simple and popular implementation. Can we do something to make search more effective in practice?
 - No: if items are accessed equally likely
 - Yes: otherwise (we have a probability distribution of the items)
 - Intuition: Frequently accessed items should be in the front.
 - Two cases: Do we know the access distribution beforehand or not?
 - For short lists or extremely unbalanced distributions this may be faster than AVL trees or Skip Lists, and much easier to implement.
Optimal Static Ordering

Example:

<table>
<thead>
<tr>
<th>key</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>frequency of access</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>access-probability</td>
<td>(\frac{2}{26})</td>
<td>(\frac{8}{26})</td>
<td>(\frac{1}{26})</td>
<td>(\frac{10}{26})</td>
<td>(\frac{5}{26})</td>
</tr>
</tbody>
</table>

- Order A, B, C, D, E has expected access cost
 \[
 \frac{2}{26} \cdot 1 + \frac{8}{26} \cdot 2 + \frac{1}{26} \cdot 3 + \frac{10}{26} \cdot 4 + \frac{5}{26} \cdot 5 = \frac{86}{26} \approx 3.31
 \]

- Order D, B, E, A, C has expected access cost
 \[
 \frac{10}{26} \cdot 1 + \frac{8}{26} \cdot 2 + \frac{5}{26} \cdot 3 + \frac{2}{26} \cdot 4 + \frac{1}{26} \cdot 5 = \frac{66}{26} \approx 2.54
 \]

Claim: Over all possible static orderings, the one that sorts items by non-increasing access-probability minimizes the expected access cost.

Proof Idea: For any other ordering, exchanging two items that are out-of-order according to their access probabilities makes the total cost decrease.
Optimal Static Ordering

Example:

<table>
<thead>
<tr>
<th>key</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>freq</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>prob</td>
<td>(\frac{2}{26})</td>
<td>(\frac{8}{26})</td>
<td>(\frac{1}{26})</td>
<td>(\frac{10}{26})</td>
<td>(\frac{5}{26})</td>
</tr>
</tbody>
</table>

- Order \(A, B, C, D, E\) has expected access cost
 \[\frac{2}{26} \cdot 1 + \frac{8}{26} \cdot 2 + \frac{1}{26} \cdot 3 + \frac{10}{26} \cdot 4 + \frac{5}{26} \cdot 5 = \frac{86}{26} \approx 3.31\]

- Order \(D, B, E, A, C\) has expected access cost
 \[\frac{10}{26} \cdot 1 + \frac{8}{26} \cdot 2 + \frac{5}{26} \cdot 3 + \frac{2}{26} \cdot 4 + \frac{1}{26} \cdot 5 = \frac{66}{26} \approx 2.54\]

Claim: Over all possible static orderings, the one that sorts items by non-increasing access-probability minimizes the expected access cost.

Proof Idea: For any other ordering, exchanging two items that are out-of-order according to their access probabilities makes the total cost decrease.
Dynamic Ordering: MTF

- What if we do not know the access probabilities ahead of time?
- Rule of thumb (**temporal locality**): A recently accessed item is likely to be used soon again.
- In list: Always insert at the front
- **Move-To-Front (MTF)**: Upon a successful search, move the accessed item to the front of the list

Can also do MTF an array, but then insert and search from the back
Dynamic Ordering: Transpose

- **Transpose**: Upon a successful search, swap the accessed item with the item immediately preceding it.

```
A → B → C → D → E
↓ Search(D)
A → B → D → C → E
↓ Insert(F)
F → A → B → D → C → E
```
Dynamic Ordering: Transpose

- **Transpose**: Upon a successful search, swap the accessed item with the item immediately preceding it.

 ![Diagram of Transpose]

 Performance of dynamic ordering:
 - Both can be implemented in arrays or linked lists.
 - Transpose does not adapt quickly to changing access patterns.
 - MTF works well in practice.
 - **Can show**: MTF is “2-competitive”:
 - No more than twice as bad as the optimal static ordering.