2-AVL Trees

Let a 2-AVL tree be a binary search tree where for every node, the difference of heights of its left and right subtree is at most 2. Prove that a 2-AVL tree has height at most $3 \log n$ where n is the number of nodes in the tree.

Scapegoat Tree Insertion

Insert the element 13 in the following scapegoat (2/3)-tree. The numbers in the brackets are the number of nodes in that subtree.
Perfectly Balanced BST

Construct a perfectly balanced binary search tree out of an array A of n sorted elements in linear time.

Skip Lists

Suppose you have a skip list with only three levels. The top level contains only the sentinels. The lowest level has $n + 2$ keys: $-\infty, a_0, ..., a_{n-1}, \infty$, while the middle level contains $k + 2$ keys including the sentinels. Assume k divides n. Suppose that the k entries are evenly spread out and the first entry corresponds to a_0.

- What is the worst case time for a query? Give a tight bound involving k and n.
- Given n, how should you choose k to minimise the worst case, and what does the worst case become in that case?