Skip List Analysis

Let P be the search path for some key k. Let v be some node in the search path. Prove that node v is the highest node in its tower if and only if the search path P came to v from the left.

Interpolation Search

Construct an array A such that interpolation search for some key K takes $\Theta(n)$ time. Specify what K is. Here is the code for interpolation search from the slides for reference:

```plaintext
Interpolation-search(A, n, k)
A: Array of size n, k: key
1. $\ell \leftarrow 0$
2. $r \leftarrow n - 1$
3. while $(\ell < r) \& \& (A[r] = A[\ell]) \& \& (k \geq A[\ell]) \& \& (k \leq A[r])$
4. $m \leftarrow \ell + \lfloor \frac{k-A[\ell]}{A[r]-A[\ell]} \cdot (r-\ell) \rfloor$
5. if $A[m] < k$ $\ell \leftarrow m + 1$
6. elseif $A[m] = k$ return $m$
7. else $r \leftarrow m - 1$
8. if $(k = A[\ell])$ return $\ell$
9. else return “not found, but would be between $\ell - 1$ and $\ell$”
```

MTF

We saw MTF in class. If we are using lists, then Insert with MTF-heuristic can be done in constant time. How can we implement MTF on a dynamic array so that Insert takes constant time?
Convex Hull

Recall: A convex set is a set of points such that, given any two points \(a \) and \(b \) in that set, the line joining \(a \) and \(b \) lies entirely within that set.

The convex hull of a set of \(n \) points in the plane is the smallest convex set that contains all points. Below is a figure of a set of points and another figure showing a red outline containing all points forming the convex hull for that set.

Note: Understanding the concept of a convex hull is NOT important to the question

Tim has designed an algorithm that gets as input \(n \) points and a parameter \(H \), and it outputs, in \(O(n \log H) \) time, one of the following:

- “This \(H \) is too small”, or
- “Here is the convex hull, and it contains \(h \) points for \(h \leq H \)”

Design an algorithm that finds the convex hull in \(O(n \log h) \) time, where \(h \) is the number of points in the convex hull.

If you are curious about the convex hull finding algorithm, you can read up on it more here: Chan’s algorithm