1 Suffix Trees

Most Common Letter: Given a text T, determine the most commonly occurring letter in T.

Challenge Questions

Find Anagrams: Given a list of n strings of length L over some alphabet \mathcal{E}, determine how many strings are anagrams of some other string in the list.

Is Valid Suffix Tree?: Given a suffix tree T, determine if it is a valid suffix tree for some text.

2 Building a Suffix Array

Build the suffix array for the text $T = \text{"neverever"}$.

3 Huffman Encoding

1. Build the Huffman tree for $S = \text{"pusheen"}$

2. Given n characters with frequencies $1, 1, 2, 4, 8, ..., 2^{n-2}$, show that the Huffman tree of these frequencies would be of height $n - 1$.

3. Below is an encoding trie T for the string “xerxes”. Argue that this is not a Huffman tree.
4. More generally, let T be an encoding trie with two characters a and b such that $f(a) < f(b)$ and $d_T(a) < d_T(b)$ (where $d_T(c)$ denotes the depth of the leaf that stores c). Argue that T is not a Huffman tree.

5. Let T be an encoding trie with two characters a and b such that $f(a) \leq f(b)$ and $d_T(a) \leq d_T(b)$. Let T' be the trie obtained by switching a and b. Argue that the encoding with T' is no longer than the one of T.

Remark: With this insight, doing Case 2 of Huffman-optimality is very easy. Time permitting, we may do this as well.