Note: this is a sample of problems designed to help prepare for the final exam. These problems do not encompass the entire coverage of the exam, and should not be used as a reference for its content. Also, these problems are not organized by difficulty, but by the order in which the relevant concepts were taught.

1. True/false.

For each statement, write true or false.
(a) Open addressing hashing that uses linear probing will require two hash functions.
(b) Run-length encoding may result in text expansion on some strings.
(c) When doing range search on a quadtree, if there is no point within the range specified, the worst case runtime is in $\Theta(h)$.
(d) Suffix trees for pattern matching require preprocessing the pattern.
(e) Inserting a set of keys into an empty compressed trie will always result in the same final trie regardless of the insertion order.
(f) The runtime complexity of range query for kd-trees depends on the spread factor of points.
Recall: the spread factor is the ratio of the side length of the minimum bounding box, whose bottom-left corner is at $(0,0)$, to the minimum distance between the points. We assume the points have non-negative coordinates.
(g) When using KMP to search for the pattern a^{m} in the text $a^{n-1} b$, the positions of the pattern shifts are the same as the brute-force algorithm.
(h) Rehashing may be required in Cuckoo Hashing even if the load factor is at an acceptable value.
(i) Adaptive (rather than static) dictionaries use move-to-front.

2. Multiple choice.

Pick the one best answer for each question.
(a) Which of the following functions $f(i)$ would cause interpolation search to have the least worst case runtime on an array A with $A[i]=f(i)$?
(i) $f(i)=\log i$
(ii) $f(i)=i$
(iii) $f(i)=i^{2}$
(iv) $f(i)=2^{i}$
(b) Given $h_{0}(k)=k \bmod 7$ with two hash tables, each of size 7 , which of the following hash functions would be most suitable for h_{1} in double hashing?
(i) $h_{1}(k)=k^{2} \bmod 7$
(ii) $h_{1}(k)=(k \bmod 6)+1$
(iii) $h_{1}(k)=2 \cdot(k \bmod 4)$
(iv) $h_{1}(k)=\left\lfloor\frac{1}{2} \cdot(k \bmod 13)\right\rfloor$
(c) If the root of a quadtree represents the region $[0,128) \times[0,128)$ while the deepest (lowest) internal node represents the region $[88,92) \times[24,28)$, what is the height of the quadtree?
(i) 4
(ii) 5
(iii) 6
(iv) 7
(d) Which of the following statements about compressed tries is false?
(i) every internal node stores an index indicating the position to be tested on a search
(ii) the root of the compressed trie always tests the first bit
(iii) a compressed trie that stores n keys always contains less than n internal nodes
(iv) the height of a compressed trie never exceeds the length of the longest string it stores
(e) Which of the following search operations on a non-dictionary structure has the most efficient worst-case runtime?
(i) searching for a specific key in a max-heap
(ii) searching for a specific point in a kd-tree with points in general position
(iii) searching for any occurrence of a specific character in a text using a suffix tree, with children pointers stored as arrays
(iv) searching for a specific character in a decoding trie of characters (like Huffman's trie)

3. Hashing.

Let $p \geq 3$ be prime, and consider the universe of keys $U=\left\{0,1, \ldots, p^{2}-1\right\}$. Answer each question for an initially empty hash table of size p.
(a) Using double hashing with $h_{1}(k)=k \bmod p$ and $h_{2}(k)=\lfloor k / p\rfloor+1$, give a sequence of two keys to be inserted that results in failure.
(b) Using cuckoo hashing with $h_{1}(k)=k \bmod p$ and $h_{2}(k)=k \bmod (p-1)+1$, give a sequence of three keys to be inserted that results in failure.
(c) Using cuckoo hashing with $h_{1}(k)=k \bmod p$ and $h_{2}(k)=\lfloor k / p\rfloor$, give a sequence of three keys to be inserted that results in failure.

4. Boyer-Moore.

Boyer-Moore can be modified in many ways. For each of the modifications listed below, state whether the modification is valid, i.e. the modified Boyer-Moore will always successfully find the first occurrence of P in T, if P appears in T, or return FAIL if P is not in T.
If the answer is "Yes", provide a brief explanation of why it is still valid. If the answer is "No", demonstrate a counter-example, i.e. trace the algorithm on specific P and T of your choice where the result is incorrect.
(a) Using a first-occurrence function (denoting the index of the first occurrence of the argument character) instead of a last-occurrence function.
(b) When checking a pattern shift, compare characters from the start of the pattern and move forward, instead of scanning backwards from the end of the pattern.
(c) Use the last-occurrence function for $P[0 . . m-1]$, i.e. P with its last character removed, instead of the last-occurrence function for P.
5. Quad trees.
(a) Create a set of 8 distinct points for which all coordinates are integers in the range $[0,8)$ and that has the following quad tree:

(b) Given a quad-tree T, what is the smallest integer k such that there exists a set of distinct points whose quad-tree is T and whose coordinates are integers in the range $\left[0,2^{k}\right)$?

6. Range queries.

Consider the following set of points in $[0,16]^{2}$:

$$
\begin{gathered}
p_{0}:(3,5), p_{1}:(7,8), p_{2}:(6,2), p_{3}:(8,0), p_{4}:(0,3), \\
p_{5}:(4,6), p_{6}:(2,9), p_{7}:(9,1) .
\end{gathered}
$$

(a) Show the corresponding quad-tree.
(b) Show the corresponding kd-tree.
(c) Show one possible range tree. The primary tree should be perfectly balanced.

7. Pattern matching.

Consider the pattern $P=0110101$ and the text T listed in the following table.

(a) Indicate all the checks that were done by the brute-force method.
(b) Consider the Karp-Rabin fingerprint that simply counts the number of 1 s in the bit-string. Is this a rolling hash-function? And using these fingerprints, how many checks were done during Karp-Rabin pattern matching?
(c) Compute the KMP failure-function for P.
(d) Show the KMP automaton for P.
(e) Consider now the pattern $P=$ fiddledidi. Show the Boyer-Moore last-occurrence array.

8. Suffix trees.

Jason discovered a secret message in the form of a suffix tree S, indicating the location of a hidden treasure.
(a) Design an algorithm that recovers the original text T from its corresponding suffix tree S. The algorithm should run in $O(n)$ time while using $O(n)$ auxiliary space.
(b) Determine the original text for the following suffix tree:

9. Move-to-front and run-length encoding.

Consider an encoding algorithm that utilizes the following fixed dictionary, where the alphabet consists of letters from A to P:

Char	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P
Code	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

The steps of the encoding algorithm are:

- Encode each character with the dictionary above using 4-bit codewords, while also applying Move-to-front.
- Encode the resulting string with RLE.
(a) Decode the string 1000101100110011, which was encoded using the algorithm described.
(b) For each $n>1$, give an example of a valid string whose encoding has the minimum number of bits over all strings of length n.
(c) For each $n>1$, give an example of a valid string whose encoding has the maximum number of bits over all strings of length n.

10. Consecutive strings in a trie.

Given an uncompressed trie T that stores a list of binary strings, design an algorithm consecutive $\left(b_{1}, b_{2}\right)$ that takes two binary strings in T as input, and outputs true if the strings are consecutive in pre-order traversal of the trie, and outputs false otherwise. Assume that branches are ordered as $\$, 0,1$. The runtime should be bounded by $O\left(\left|b_{1}\right|+\left|b_{2}\right|\right)$.

For example, suppose T stores $\{000,01,0110,101,11\}$. Then:

- consecutive $(0110,101)$ returns true
- consecutive $(01,000)$ returns true
- consecutive $(11,000)$ returns false

11. Burrows-Wheeler Transform.
(a) Encode the following string using BWT: TORONTO
(b) Decode the following string using the inverse BWT: IPSSM\$PISSII
