
CS240E Final review session Apr. 17 (W23)

Note: this is a sample of problems designed to help prepare for the final exam. These
problems do not encompass the entire coverage of the exam, and should not be used
as a reference for its content. Also, these problems are not organized by difficulty, but
by the order in which the relevant concepts were taught.

1. True/false.

For each statement, write true or false.

(a) Open addressing hashing that uses linear probing will require two hash func-
tions.

(b) Run-length encoding may result in text expansion on some strings.

(c) When doing range search on a quadtree, if there is no point within the range
specified, the worst case runtime is in Θ(h).

(d) Suffix trees for pattern matching require preprocessing the pattern.

(e) Inserting a set of keys into an empty compressed trie will always result in the
same final trie regardless of the insertion order.

(f) The runtime complexity of range query for kd-trees depends on the spread factor
of points.

Recall: the spread factor is the ratio of the side length of the minimum bounding
box, whose bottom-left corner is at (0, 0), to the minimum distance between the
points. We assume the points have non-negative coordinates.

(g) When using KMP to search for the pattern am in the text an−1b, the positions
of the pattern shifts are the same as the brute-force algorithm.

(h) Rehashing may be required in Cuckoo Hashing even if the load factor is at an
acceptable value.

(i) Adaptive (rather than static) dictionaries use move-to-front.

2. Multiple choice.

Pick the one best answer for each question.

(a) Which of the following functions f(i) would cause interpolation search to have
the least worst case runtime on an array A with A[i] = f(i)?

(i) f(i) = log i

(ii) f(i) = i

(iii) f(i) = i2

(iv) f(i) = 2i

1

(b) Given h0(k) = k mod 7 with two hash tables, each of size 7, which of the
following hash functions would be most suitable for h1 in double hashing?

(i) h1(k) = k2 mod 7

(ii) h1(k) = (k mod 6) + 1

(iii) h1(k) = 2 · (k mod 4)

(iv) h1(k) = ⌊1
2
· (k mod 13)⌋

(c) If the root of a quadtree represents the region [0, 128)×[0, 128) while the deepest
(lowest) internal node represents the region [88, 92)× [24, 28), what is the height
of the quadtree?

(i) 4

(ii) 5

(iii) 6

(iv) 7

(d) Which of the following statements about compressed tries is false?

(i) every internal node stores an index indicating the position to be tested on
a search

(ii) the root of the compressed trie always tests the first bit

(iii) a compressed trie that stores n keys always contains less than n internal
nodes

(iv) the height of a compressed trie never exceeds the length of the longest
string it stores

(e) Which of the following search operations on a non-dictionary structure has the
most efficient worst-case runtime?

(i) searching for a specific key in a max-heap

(ii) searching for a specific point in a kd-tree with points in general position

(iii) searching for any occurrence of a specific character in a text using a suffix
tree, with children pointers stored as arrays

(iv) searching for a specific character in a decoding trie of characters (like
Huffman’s trie)

3. Hashing.

Let p ≥ 3 be prime, and consider the universe of keys U = {0, 1, . . . , p2−1}. Answer
each question for an initially empty hash table of size p.

(a) Using double hashing with h1(k) = k mod p and h2(k) = ⌊k/p⌋ + 1, give a
sequence of two keys to be inserted that results in failure.

(b) Using cuckoo hashing with h1(k) = k mod p and h2(k) = k mod (p − 1) + 1,
give a sequence of three keys to be inserted that results in failure.

2

(c) Using cuckoo hashing with h1(k) = k mod p and h2(k) = ⌊k/p⌋, give a sequence
of three keys to be inserted that results in failure.

4. Boyer-Moore.

Boyer-Moore can be modified in many ways. For each of the modifications listed
below, state whether the modification is valid, i.e. the modified Boyer-Moore will
always successfully find the first occurrence of P in T , if P appears in T , or return
FAIL if P is not in T .

If the answer is “Yes”, provide a brief explanation of why it is still valid. If the
answer is “No”, demonstrate a counter-example, i.e. trace the algorithm on specific
P and T of your choice where the result is incorrect.

(a) Using a first-occurrence function (denoting the index of the first occurrence of
the argument character) instead of a last-occurrence function.

(b) When checking a pattern shift, compare characters from the start of the pattern
and move forward, instead of scanning backwards from the end of the pattern.

(c) Use the last-occurrence function for P [0..m − 1], i.e. P with its last character
removed, instead of the last-occurrence function for P .

5. Quad trees.

(a) Create a set of 8 distinct points for which all coordinates are integers in the
range [0, 8) and that has the following quad tree:

(b) Given a quad-tree T , what is the smallest integer k such that there exists a set
of distinct points whose quad-tree is T and whose coordinates are integers in
the range [0, 2k)?

6. Range queries.

Consider the following set of points in [0, 16]2:

p0 : (3, 5), p1 : (7, 8), p2 : (6, 2), p3 : (8, 0), p4 : (0, 3),

p5 : (4, 6), p6 : (2, 9), p7 : (9, 1).

3

(a) Show the corresponding quad-tree.

(b) Show the corresponding kd-tree.

(c) Show one possible range tree. The primary tree should be perfectly balanced.

7. Pattern matching.

Consider the pattern P = 0110101 and the text T listed in the following table.

(a) Indicate all the checks that were done by the brute-force method.

(b) Consider the Karp-Rabin fingerprint that simply counts the number of 1s in the
bit-string. Is this a rolling hash-function? And using these fingerprints, how
many checks were done during Karp-Rabin pattern matching?

(c) Compute the KMP failure-function for P .

(d) Show the KMP automaton for P .

(e) Consider now the pattern P =fiddledidi. Show the Boyer-Moore last-occurrence
array.

8. Suffix trees.

Jason discovered a secret message in the form of a suffix tree S, indicating the
location of a hidden treasure.

(a) Design an algorithm that recovers the original text T from its corresponding
suffix tree S. The algorithm should run in O(n) time while using O(n) auxiliary
space.

(b) Determine the original text for the following suffix tree:

4

9. Move-to-front and run-length encoding.

Consider an encoding algorithm that utilizes the following fixed dictionary, where
the alphabet consists of letters from A to P:

The steps of the encoding algorithm are:

� Encode each character with the dictionary above using 4-bit codewords, while
also applying Move-to-front.

� Encode the resulting string with RLE.

(a) Decode the string 1000101100110011, which was encoded using the algorithm
described.

(b) For each n > 1, give an example of a valid string whose encoding has the
minimum number of bits over all strings of length n.

(c) For each n > 1, give an example of a valid string whose encoding has the
maximum number of bits over all strings of length n.

10. Consecutive strings in a trie.

Given an uncompressed trie T that stores a list of binary strings, design an algorithm
consecutive(b1, b2) that takes two binary strings in T as input, and outputs true if the
strings are consecutive in pre-order traversal of the trie, and outputs false otherwise.

Assume that branches are ordered as $, 0, 1. The runtime should be bounded by
O(|b1|+ |b2|).

5

For example, suppose T stores {000, 01, 0110, 101, 11}. Then:

� consecutive(0110, 101) returns true

� consecutive(01, 000) returns true

� consecutive(11, 000) returns false

11. Burrows-Wheeler Transform.

(a) Encode the following string using BWT: TORONTO

(b) Decode the following string using the inverse BWT: IPSSM$PISSII

6

