Lecture 13

Top-Down Parsing

CS 241: Foundations of Sequential Programs
Spring 2017

Troy Vasiga et al. (where Dan Holtby ∈ al)
University of Waterloo
Parsing

Given a grammar G and a word w, find a derivation for w.

Two strategies:

1. Top-down: Start with the start symbol. Find a non-terminal and replace it with a right-hand side of a rule. Repeat until you get to w.
 - What I was doing on Tuesday

2. Bottom-up: Start with w. Replace a right-hand side with a non-terminal. Repeat until you get to the start symbol.
 - Weird
 - But is it really?
 - Maybe

In both of the above strategies, we have to make the correct decision at each step. That’s the real trick.
Parsing Algorithm

- There is a backtracking algorithm for parsing in any CFG
 - try each rule in turn
 - if we can move “forward”, do so
 - if we cannot move “forward”, go back a step and try the “next” rule
 - stop when we find the derivation

- Backtracking is not practical.

- We will look at two (linear-time) algorithms.
Stack-based Parsing

For top-down parsing, we use a stack to remember information about our derivations and/or processed input.
Augmenting Grammars

Empty words and empty stacks can cause hassles.

We augment our grammars by adding “beginning” and “ending” characters.

Example:

2. \(S \rightarrow AyB \)
3. \(A \rightarrow ab \)
4. \(A \rightarrow cd \)
5. \(B \rightarrow z \)
6. \(B \rightarrow wz \)

On board: abywz
Top-down parsing with a stack

Invariant:

\[\text{derivation} = \text{input already read} + \text{stack} \]
Stack Example

<table>
<thead>
<tr>
<th>Derivation</th>
<th>Input read</th>
<th>Input to be read</th>
<th>Stack</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Observations:

What was I doing???

- Expanding production rules: To expand the rule $A \rightarrow \beta$:
 - Pop A
 - Push β (i.e. push the symbols in the string β in reverse order)
- Matching input: To match the character a:
 - Remove a from the front of input
 - Remove a from the top of the stack

How do we know we are done?

- We can’t expand or match

What happens then?

- We accept if input = stack = ϵ
- We reject otherwise

How to know which rule to use?

- Oracle
LL(1) Parsing

We need: \(\text{Predict}(A, x) = A \rightarrow \alpha \) so long as
- \(A \) is on top of the stack, and
- \(x \) is the first symbol of input to be read

Definition of an LL(1) grammar:

\[\forall A \in N, x \in T, |\text{Predict}(A, x)| \leq 1 \]

Meaning of:
- \(L \)
 - Leftmost character (of input)
- \(L \)
 - Leftmost derivation
- \(1 \)
 - Looking 1 token ahead (i.e. at the next token and nothing else)
Constructing a Predictor Table

CFG:

1. $S' \rightarrow \vdash S \dashv$
2. $S \rightarrow AyB$
3. $A \rightarrow ab$
4. $A \rightarrow cd$
5. $B \rightarrow z$
6. $B \rightarrow wz$

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>y</th>
<th>w</th>
<th>z</th>
<th>\vdash</th>
<th>\dashv</th>
</tr>
</thead>
<tbody>
<tr>
<td>S’</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10
Constructing a Predictor Table (with ϵ)

CFG:

1. $S' \rightarrow \vdash S \dashv$
2. $S \rightarrow AyB$
3. $A \rightarrow ab$
4. $A \rightarrow cd$
5. $B \rightarrow z$
6. $B \rightarrow wz$
7. $B \rightarrow \epsilon$

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>y</th>
<th>w</th>
<th>z</th>
<th>\vdash</th>
<th>\dashv</th>
</tr>
</thead>
<tbody>
<tr>
<td>S'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Algorithm to construct predicator table

Below, $\alpha, \beta \in (N \cup T)^*$, $x, y \in T$, $A \in N$

$\text{Empty}(\alpha) = \text{true if } \alpha \Rightarrow^* \epsilon$

$\text{First}(\alpha) = \{x \mid \alpha \Rightarrow^* x\beta\}$

$\text{Follow}(A) = \{y \mid S' \Rightarrow^* \alpha Ay\beta\}$

$\text{Predict}(A, x) =$
$\{A \to \alpha \mid x \in \text{First}(\alpha)\} \cup \{A \to \beta \mid x \in \text{Follow}(A) \text{ and } \text{Empty}(\beta)\}$
LL(1) Parsing algorithm

Input: \(w \)
push \(S' \)
for each \(x \in w \)
 while (top of stack is some \(A \in N \)) {
 pop \(A \)
 if \(\text{Predict}(A, x) = \{A \rightarrow \alpha\} \)
 push \(\alpha \)
 else
 reject
 }
pop \(c \)
if \(c \neq x \) reject
end for
accept \(w \)
Non LL(1) Grammars

1. $S \rightarrow ab$
2. $S \rightarrow acb$
Converting non-LL(1) grammars to LL(1) grammars

Factoring
A non LL(1) language

\[L = \{ a^n b^m | n \geq m \geq 0 \} \]

Grammar (ambiguous)

Grammar (unambiguous)