
Using Racket in CS 241

1 Purpose
This is a guide to using Racket 5.3 for assignments in CS 241. We will assume that students know
the basics of Racket from CS 135 and CS 136. Useful references include the Guide and Reference
in DrRacket’s Help Desk, the R5RS (Scheme standard) standard document (in DrRacket’s Help
Desk or at http://www.schemers.org), the SRFI documents describing standard libraries
(in DrRacket’s Help Desk, or at http://srfi.schemers.org) and the book, The Scheme
Programming Language (TSPL), by Kent Dybvig (available in paperback or at http://www.
tspl.org).

2 Racket 5.3
Racket can be thought of as R5RS Scheme plus many useful extensions, but there are also some
changes, meaning you cannot just paste in Scheme code and expect it to work. Your programs
should start with the line
#lang racket

which wraps your entire file in a module declaration and uses a language with many helpful li-
braries already preloaded.

To develop your programs in DrRacket, use the Racket language, not the teaching languages
used in CS 135. To run your programs on the command line, type:
racket myfile.rkt

The racket binary is included with the DrRacket distribution, but you may need to set up
your shell so that its search path includes the directory it is in (or an alias to it). Since Marmoset
uses racket to test your programs, at least your final round of testing should use this. Given that
most programs involve I/O, you may choose to do more testing on the command line.

There are many optional command-line flags for racket, including one which gives you a
basic read-evaluate-print loop (REPL) after running your program. See the Racket Reference for
more details. Any additional command-line arguments are put into a vector (see below) that is the
value of the expression (current-command-line-arguments).

Note that the values of top-level expressions are printed after evaluation if they are not <void>.
If you don’t want this to happen, you can wrap the expression with (void . . . ).

1



3 Immutable lists
One major change in Racket, with respect to Scheme, is that lists constructed in the normal fashion
are immutable. The R5RS functions set-car! and set-cdr! are not provided.

Mutable lists can be constructed using the mcons and mlist functions, as described in section
3.10 of the Racket Reference. An alternative is to use immutable lists that contain boxes, mutable
cells holding a single value, as described in section 3.12 of the Racket Reference.

4 Text I/O
You will use redirection of standard input and output to read from and write to files in 241, with
one exception discussed below.

The basic Racket output function is display. This will write a single value to standard output
in “human-readable” form. write does the same thing in “machine-readable” form; for example,
it prints quotes around strings and uses escape sequences. (newline) will begin a new line in the
output. For finer control, you can use write-char, which writes a single character to standard
output, or write-string.

Racket provides the function printf , which works in a fashion similar to the function of the
same name in C or C++. printf consumes a format string followed by several arguments:

>(printf "The values are ˜a and ˜a\n" (add1 2) "test")

The values are 3 and test
The notation "\n" in a string indicates a new line. Other such escaped characters include

"\space", "\return", and "\\" to insert a backslash in a string. The formatting escape "˜a"
prints in the style of display; see the Racket Reference for other options.

There are two basic input functions. read-char will read a single character. read will read an
S-expression, that is, something which resembles one expression in a Racket program, and produce
the corresponding list. (You can think of write as writing values in a format which read can read
back in.) read-line is an Racket extension which will read a single line and produce a string. There
are many other I/O functions detailed in Chapter 12 of the Racket Reference.

The following code will read all input lines into a list of strings.

(define (read-all-input)
(local ((define item (read-line)))

(if (eof-object? item)
empty
(cons item (read-all-input)))))

Note the use of eof-object?, which tests whether the item read is a special “end of file” object.
This is obviously not the best strategy if the input is very large, because it will use too much
memory. In this case, you want to use a tail-recursive function to read a line at a time (or several
lines, if necessary) and process them, possibly generating output, before repeating the action.

2



The function for-each works like map, but it is guaranteed to process the list in left-to-right
order, and it throws away the result of applying the function to each element of the list. It is useful
for generating output from a list.

It is occasionally useful/required in 241 to write to “standard error”, which is a separate output
stream that can be separately redirected. This is accomplished in Racket by using the more general
file output functions which take a file descriptor (or port, as they are known in Racket) as an
additional argument. The port associated with standard error can be obtained using the function
current-error-port, and the function fprintf can use this port.

(fprintf (current-error-port) "Goodbye, world.\n")

5 Working with strings and characters
Converting a string to a list of characters allows one to use Racket’s various list-processing func-
tions. The functions string->list and list->string convert in either direction. The ‘a’ character is
specified by the Racket constant #\a. The functions char->integer and integer->char will convert
to and from the numerical ASCII representation (actually, these functions work with the Unicode
encoding UTF-8, but this coincides with ASCII in the 0-127 range). The function format is like
printf , but instead of creating output, it produces a string. This is a quick way to create complicated
strings containing computed results.

There are a small number of functions which can be applied to strings such as string-length,
string-ref , and substring, and there is a larger string library which can be required, as discussed
below. Note also that Racket provides string matching using regular expressions, also described
below. This is useful for breaking up a string into a list of shorter strings according to various
criteria. On a more mundane level, string->integer and integer->string may be handy.

6 Binary I/O and processing
Much of CS 241 involves representation and manipulation of bit strings.

Racket allows integer values to be specified not only as arbitrary-length strings of decimal
digits, as you are familiar with, but in binary, octal, and hexadecimal as well. The Racket values
10, #d10, #b1010, #o12, and #xa are all equal. The printf and format functions permit one to
print integers in binary, octal, and hexadecimal; see the Racket Reference for details.

To manipulate such values on the bit level, there are a few functions described in section
3.2.2.6 of the Racket reference manual. bitwise-and, bitwise-ior (“inclusive OR”), bitwise-xor,
and bitwise-not should be obvious, except that they can be given arguments of arbitrary length.
To figure out what they should do, consider their arguments to be padded on the left. Nonnega-
tive integers are padded with an infinite number of 0’s, and negative integers are padded with an
infinite number of 1’s (as happens with 2’s complement numbers). Thus (bitwise-not 0) is −1.
The function integer-length will return the number of bits in a number without such padding, and
arithmetic-shift will shift such sequences of bits a specified number of places left or right.

3



CS 241 also deals with bits grouped into bytes and words. Racket provides the data type “byte
string” (described in section 3.4 of the Racket Reference) to deal with such groupings effectively.
A byte string is a sequence of bytes, each byte being a value between 0 and 255 inclusive. You
can specify a byte-string constant like a string constant but putting a # just before the first double
quote. If you need to specify an eight-bit value that doesn’t correspond to a character on the
keyboard or a convenient escape sequence like "\n", you can use a backslash followed by the
octal representation; thus the byte strings #"a" and #"\141" are equal.

There are a number of byte-string functions that parallel the string functions, described in
section 3.4.1 of the Racket Reference. For example, there are functions bytes->list and list->bytes;
the lists produced are not lists of characters but lists of numbers between 0 and 255. Sections
12.2 and 12.3 of the Racket Reference describe byte I/O, again parallel to the character-based I/O
described above. For example, there are functions read-bytes-line, read-bytes (with the number of
bytes to be read as a parameter), read-byte, and the corresponding write procedures.

7 Structures
Reader of the textbook, ”How to Design Programs” (HtDP) will be familiar with structures, which
are an extension found in full Racket and the teaching languages. Here is the definition of a
structure type holding the coordinates of a point:

(define-struct posn (x y) #:transparent)

HtDP readers will not be familiar with the third argument, which makes the fields of the struc-
ture visible in all circumstances. (This is best described in the Racket Reference, section 5.)

The above expression, when evaluated, provides the constructor make-posn (taking two argu-
ments in this case), the selectors posn-x and posn-y, and the type predicate posn?. Structures are
immutable by default; adding the keyword #:mutable also provides the field mutators set-posn-x!
and set-posn-y!. Structures are not part of standard Scheme (R5RS); lists or vectors (next section)
are used instead.

Racket provides an alternate way of defining structures which has some advantage. With this
definition:

(struct posn (x y) #:transparent)

the constructor is simply called posn. This is now the preferred way of defining structures in full
Racket.

8 Vectors
Most languages provide arrays, which implement constant-time insertion and lookup into a fixed-
sized table. In Racket, these are known as vectors. The only advantage of vectors over lists is
speed. However, they are less flexible than lists. Imperative languages tend to emphasize arrays for
historical reasons, and many “pseudocode” algorithms are described using them. These algorithms
can often be implemented using lists or hash tables (described below). There are times when

4



vectors are appropriate, but this has to be determined by a careful examination of their intended
use.

A vector can be created with vector. The expression (vector 1 ’blue true) returns a vector
containing the three given elements. build-vector consumes an integer k and an optional initial
value, and creates a vector of size k. vector-length produces the length of its vector argument.

Vectors are indexed starting with 0. (vector-ref v i) produces the ith element of vector v, and
(vector-set! v i val) sets the ith element of v to val. The functions vector->list and list->vector do
what they suggest.

Here is an implementation of binary search using vectors. Note that we are using the Racket
construct (if test true-exp false-exp), which shortens single-test conds (Racket also provides one-
armed when and unless). You should know that #f and false are the only things that if and cond
tests consider to be false, but any other value is considered to be true. This can simplify some
tests. We are also using the local construct from 135, which provides a convenient alternative to
the Racket constructs let, let∗, and letrec. Below we will discuss all of these constructs.

(define (contains? svec key)
(local (

(define (bin-search lower upper)
(if (= lower upper)

lower
(local (

(define (mid (quotient (+ lower upper) 2))))
(if (> key (vector-ref svec mid))

(bin-search (add1 mid) upper)
(bin-search lower mid)))))

(define answer (bin-search 0 (sub1 (vector-length svec)))))
(if (= key (vector-ref svec answer))

answer
false)))

(define example (vector 1 3 5 6 7 9 10 12))

(= (contains? example 3) 1)
(not (contains? example 8))
(= (contains? example 9) 5)

9 Hash Tables
Racket provides both mutable and immutable hash tables, described in section 3.13 of the Racket
Reference. These implement what one might call “dictionaries”, providing nearly constant-time
insertion, lookup, modification, and deletion of (key,value) pairs. The only advantage of a hash
table over a list of (key,value) pairs (or an unbalanced binary search tree) is speed. Hash tables
retain some of the flexibility of lists, but there is no implicit ordering. Hash tables will be useful

5



in CS 241 for implementing symbol tables and other lookup tables. There will be times, however,
when a list of (key,value) pairs will suffice.

(make-hash) creates a new hash table in which values are to be compared with equal?, as is
necessary for strings; (make-hasheq) creates a table for which eq? (pointer comparison) is used).
(hash-set! table key value) puts the given (key,value) pair into the given table (removing any other
pair with the same key), and (hash-ref table key failure) retrieves the value associated with the
given key. If there is no such value, then if failure is a procedure with zero arguments, it is called
and it provides the value; if failure is not a procedure, it is returned by hash-ref . (hash-remove
table key) will remove any (key,value) pair without replacing it.

(hash-count table) gives the number of elements in the hash table. You can iterate over hash
tables with hash-map (which accumulates the result of applying the given function into a list) or
hash-for-each. Details on these and other hash table functions are in section 3.13 of the Racket
Reference manual. Racket also provides immutable hash tables, which can be updated in a purely
functional fashion (the update function produces a new table).

Here is an example of removing duplicates from a list in (essentially) linear time. We process
the list accumulatively, checking whether each element is a key in the hash table. If it is, it’s a
duplicate. If it isn’t, we add it (with value true), and also add it to the accumulator.

(define (remove-duplicates lst)
(local (

(define ht (make-hash))
(define (rd-helper lst acc)

(cond
[(empty? lst) (reverse acc)]
[else
(cond

[(hash-ref ht (first lst) false)
(rd-helper (rest lst) acc)]

[else
(hash-set! ht (first lst) true)
(rd-helper (rest lst) (cons (first lst) acc))])])))

(rd-helper lst empty)))

(remove-duplicates (list 2 3 4 3 2 1 2 3 4 2 3)) => (2 3 4 1)

10 Higher-Order Functions, Eval, Apply
The common presentation of map gives it two arguments (a function with one parameter, and a
list). In fact, it can take k arguments, where the first argument is a function accepting k − 1
parameters. The expression (map + list1 list2 list3) will produce a list which is the element-wise
sum of the three argument lists. This is also true for for-each, and for the higher-order functions
provided by the list.ss library, such as foldr and foldl (which are discussed below).

6



The Racket function apply consumes a function and a list, and applies the function with the
elements of the list as an argument; (apply + (list 1 2 3)) produces 6. This is occasionally useful.

11 Implicit Begins and Internal Defines
There are implicit begin statements wrapped around the body of every lambda expression (includ-
ing the implicit ones in function definition), and every local, let, and the other similar constructs
discussed in the next section. There are also implicit begin statements wrapped around every cond
answer (though not if, for obvious reasons). We used this in the “remove duplicates” example
above.

Before the implicit begin in a lambda or function definition, Racket allows internal defines.
This is an alternative to immediately using one of the constructs in the next section (internal defi-
nitions are converted to a use of letrec).

12 Local and Let
The single local binding construct local used in 135 is also available in the full Racket language,
but Racket contains many similar constructs.

let takes a number of name-value bindings without using the keyword define, plus any number
of body expressions. (let ([x 1][y 2]) (+ x y)) yields 3. None of the names are in the scope of any
of the value-expressions.

let∗ is like let, but later bindings can use names defined in earlier bindings. let∗ is implemented
using nested lets.

letrec adds the feature that all of the names are in the scope of all the value-expressions. It can
be used to define recursive and mutually-recursive procedures.

7



The semantics of local is that the list of definitions at the beginning are lifted to the top level
after being rewritten using unique names, with a similar rewriting of the body.

(local ((define x 1)
(define y (+ x 1)))

(+ x y)) =>
(define x unique 1)
(define y unique (+ x unique 1))
(+ x unique y unique)

There is a variation on let known as “named let” which facilitates the writing of loops. 135
teaches how to do this using an accumulatively-recursive helper function. The following code
does this using a named let, whose syntax essentially defines the local helper function myloop.
The names in the list of bindings in the let become the parameters, and the values are the initial
arguments.

(define (filter pred lst)
(let myloop ((l lst) (acc empty))

(cond
[(empty? l) (reverse acc)]
[(pred (first l)) (myloop (rest l) (cons (first l) acc))]
[else (myloop (rest l) acc)])))

(filter even? ’(1 2 3 4 5 6)) => ’(2 4 6)

This saves a little bit of typing and indentation.
Racket provides iterations and comprehensions (see section 11 of the Racket Reference), which

are basically ways of writing nested loops in a very terse fashion. These may save you a lot of
typing, at the cost of some time spent initially to learn to use them properly.

13 List Utilities
CS 135 students will be familar with the renamed basic list functions first, rest, and empty?, which
make code easier to read. Then there is the higher-order function filter, as well as foldr which
abstracts structural recursion on lists and foldl which abstracts accumulative recursion. Section 3.9
of the Racket Reference lists several more useful utilities, such as assf for working on association
lists (lists of two-element lists), findf , last-pair, sort, take, drop, append-map, filter-not, remove,
and remove∗. Knowing about these can save a lot of time coding small helper functions.

14 String Utilities
CS 135 and CS 136 spent little time on strings in Racket. There are some useful string functions
defined in section 3.3 of the Racket Reference manual, but the really useful ones concern regular
expressions.

8



Racket provides some functions which use regular expressions to manipulate strings. A regular
expression is a way of specifying a string which is actually a pattern intended to match a portion of
another string called the text string. The simplest regular expressions are strings like “abc”, which
just matches an occurrence of “abc” in the text string. But some characters are special in patterns.
A period matches any character, so “a.c” will match an occurrence of “abc” but also “aqc”. If you
really want to match a period, you must escape it with a backslash: “a\.bc”. You can match zero or
more occurrences of a character by putting an asterisk after it, and one or more by using a plus. So
“a*bc” will match “bc”, “abc”, “aabc”, and so on. There are more special characters, which you
can read about in Chapter 9 of the Racket Guide manual and section 3.7 of the Racket Reference
manual.

Playing with various patterns and texts, using regexp-match, is the best way to understand these.
Note that you will learn about regular expressions in CS 241, though the syntax will be different,
as it will be for regular expression libraries in other languages. regexp-match, given a pattern and
text, produces a list of all substrings of the text that match the pattern. regexp-split is the opposite:
given a pattern and text, it produces a list of strings which are all the parts that don’t match. This
is very useful.

(define test "abc,def,gh,i,jk,lmn")
(regexp-split "," test) => ("abc" "def" "gh" "i" "jk" "lmn")

You know from CS 135 and CS 136 that a typical way of working with a string in Racket is to
convert it to a list of characters with string->list, process it in some fashion (perhaps making use
of abstract list functions) and convert the result back with list->string. Many efficient implemen-
tations of this type of processing are provided by the SRFI 13 string library, which can be loaded
by including the following line of code.
(require srfi/13)

This provides functions such as string-append, string-take, string-drop, string-map, and string-
fold. It also provides search and replace functions. string-join and string-tokenize may be useful
for simple ways of putting together or taking apart strings. (Some of these are available in Racket
as well, so check the documentation.)

String processing is tricky in many languages. Suppose you wish to write code to create an
answer list incrementally by tacking one new element at a time onto the end, using append. This
will, as we saw in CS 135, take time proportional to the square of the length of the final result. The
same thing will be true if we use string-append to tack short strings on to the end of an answer
string one at a time. The solution in CS 135 was to accumulate the answer list in reverse order
(just using cons to add each new element to the front of the accumulator) and reverse it once it was
complete. The string solution, using SRFI 13, is to accumulate the answer string as a list of strings
in reverse order and then use string-concatenate-reverse (a function you can easily write yourself)
to concatenate the strings from the end of the list to the front, in time proportional to the length of
the final result. There is also a function string-concatenate in case you have the list of strings in
the correct order already.

9



15 Quasiquote and Matching
You probably know quote as a way of quickly writing lists. The lists ’((1 2) (3 4)) and (list (list 1
2) (list 3 4)) are structurally equal.

Quasiquote is a way of using quote notation but interpolating expressions which are not quoted,
but evaluated. To do this, an open-single-quote is used to start the list, and a comma to start an
expression that is evaluated.

‘(1 2 ,(+ 3 4)) => ’(1 2 7)

This avoids big expressions using list. You can also splice in the contents of an expression
which evaluates to a list, using ,@.

‘(1 2 ,@(build-list 3 add1)) => ’(1 2 1 2 3)

Trees are an important data structure in CS 241. From CS 135, you know that you can rep-
resent trees using either structures (example: binary search trees) or hierarchical lists (example:
expression trees). The advantage of using structures is that code is more readable and you will get
an understandable error if your code assumes a node is of one type but you provide it a node of
a different type. The advantage of using lists is that the notation described above makes it easy
to describe data, you have all the abstract list functions available to you, and you don’t need to
replicate code for similar but different types of structures. You will have to think carefully about
how you represent data.

Some of the differences between these two representations can be erased with the use of pattern
matching. Racket provides a number of pattern-matching functions that are very useful when you
have to destructure and work with lists or structures. Instead of using list or structure selector
functions to pick values out, and then using constructor functions to put together a related computed
value, you can specify a pattern with variables that match parts of lists or structures, and then use
those variables to specify the result.

10



The example below shows how a value is removed from a binary search tree using conventional
syntax, and then using the match special form.

(define (remove-from-bst n bst)
(cond

[(boolean? bst) false]
[(< (node-ssn bst) n)

(make-node
(node-ssn bst)
(node-name bst)
(node-left bst)
(remove-from-bst n (node-right bst)))]

[(> (node-ssn bst) n)
(make-node
(node-ssn bst)
(node-name bst)
(remove-from-bst n (node-left bst))
(node-right bst))]

[(boolean? (node-left bst)) ; (node-ssn bst) is n
(node-right bst)]

[(boolean? (node-right bst))
(node-left bst)]

[else
(make-node

(node-ssn (largest-in-bst (node-left bst)))
(node-name (largest-in-bst (node-left bst)))
(remove-largest-from-bst (node-left bst))
(node-right bst))]))

(define (remove2 n bst)
(match bst

[#f false]
[(struct node s nm l r)

(cond
[(< s n) (make-node s nm l (remove2 n r))]
[(> s n) (make-node s nm (remove2 n l) r)]
[(boolean? l) r]
[(boolean? r) l]
[else (match-let ([(struct node s1 nm1 ) (largest-in-bst l)])

(make-node s1 nm1 (remove-largest-from-bst l) r))])

You can see how match takes an argument and a series of pattern-expression pairs; the first
pattern that matches binds a number of pattern variables which are used in evaluating the corre-
sponding expression. The “struct” indicates a structure (whose name follows); changing that to

11



“list” would match a five-element list, binding the five names that follow (node is the first) to each
of the values in it. An underscore or “ ” will match anything. Note the use of match-let in the last
case. This type of pattern matching is built into the languages ML and Haskell, but is not standard
in regular Racket.

There are many more options for patterns described in chapter 8 of the Racket Reference. The
example below demonstrates the use of literal symbols and computed predicates in simplifying an
interpreter for arithmetic expressions such as ’(+ (∗ 2 3) (− 4 1)). First, we present the version
written without pattern matching.

(define (interp exp)
(cond

[(number? exp) exp]
[(symbol=? (first exp) ’+) (+ (interp (second exp)) (interp (third exp)))]
[(symbol=? (first exp) ’−) (− (interp (second exp)) (interp (third exp)))]
[(symbol=? (first exp) ’∗) (∗ (interp (second exp)) (interp (third exp)))]
[(symbol=? (first exp) ’/) (/ (interp (second exp)) (interp (third exp)))]))

This would be even less readable if we used car, cadr, and caddr instead of first, second, and
third. It’s not too bad as is, but if we want to add more syntax (keywords, variables, etc.) it would
get complicated fast. Here’s the pattern-matching version.

(define (interp exp)
(match exp

[(list ’+ l r) (+ (interp l) (interp r))]
[(list ’− l r) (− (interp l) (interp r))]
[(list ’∗ l r) (∗ (interp l) (interp r))]
[(list ’/ l r) (/ (interp l) (interp r))]
[(? number? n) n]))

These techniques can pay off when manipulating abstract syntax trees in CS 241.

12



16 Unnecessary Complications
The programs you have to write in CS 241 are fairly short and specialized, and there are some
features of Racket that are overkill. You probably don’t need to use modules (Chapter 6 of the
Racket Guide manual), or the object/class system (Chapter 13). class.ss in MzLib. Modules
facilitate code maintenance and reuse, as well as some of the optimizations that Racket performs,
and it is necessary to master class.ss in order to use GUI components.

Continuations in general are overkill for CS 241, though Racket’s exception-handling mech-
anism (10.1 in the Racket Guide manual) may come in handy for error recovery or for quickly
returning from a deep recursion without having to check for errors or success flags at each step on
the way back up. Macros can make your life easier at times, but the effort required to master them
may not be worth the payoff in this course.

13


