Lecture 2
Machine language
Let my machine talk to me...

CS 241: Foundations of Sequential Programs
Winter 2018

Troy Vasiga et al
University of Waterloo
In Linux (and all operating systems)

Bit sequences matter!
Lots of ways of Linux-ifying your Windows machine:

- cygwin (and use
 `ssh -Y yourname@linux.student.cs.uwaterloo.ca`)
- Linux Live CD
- install your own linux (Ubuntu is well supported and easy to use)
- putty

You may also use the lab machines running Linux in MC 3xxx or MC 2xxx.
Grouping of Bits

- most common grouping is a byte: 8 bits
- Integers:
- Characters:
Larger Groupings of Bits

- “standard” ASCII
- “extended” ASCII
- Unicode (e.g., UTF-8)
A word about words

A word on a machine is:

- 8
- 16
- 32
- 64
Files

- a sequence of bytes
- the interpretation is in the eye of the beholder
 - `cat` interprets the file as a sequence of ASCII characters
 - `eog` interprets the file as a description of an image
 - `xxd` indicates exactly what bits are in the file
Files:
 - beep
 - hasX1
 - babe.jpg

Programs (that interpret the files):
 - cat
 - eog
 - xxd
CPU
Memory (RAM)
Instructions to the machine

MIPS: 18 different 32-bit instructions encoded in two basic instruction formats

See the MIPS Machine Language Reference sheet (from the course webpage)
MIPS as a Programming Language

- the language that the CPU speaks

- example: add $1, $2, $3

- human meaning

- computer meaning
Communication between CPU and RAM

- load

- store
Machine Cycle

PC =

IR =

Fetch-Decode-Execute Loop

- PC ← 0
- loop
 - fetch word from RAM whose address is in the PC
 - place that word in IR
 - PC ← PC + 4
 - decode and execute the instruction that is in IR
Examples

See website. In particular:

▶ add example
▶ add and lis example
▶ slt example
▶ beq example

Note: you are writing *subprograms* (for the most part) in this course, and thus you should always *return*.