Lecture 8
Deterministic Finite Automata

CS 241: Foundations of Sequential Programs
Winter 2018

Troy Vasiga et al
University of Waterloo
Review

- formal languages give a theoretical basis for communication and organizing processes
- terminology (alphabet, word, language)
- specification vs. recognition
- studying language levels that increase in power/complexity
- regular languages are composed of union, concatenation and repetition
Recognizers: Finite Automata

Regular languages can be recognized by finite automata. We begin with deterministic finite automata, also called DFAs.

- states
- transitions
- start state
- final states
Finite Automata Example 1

Example: selected opcodes from MIPS assembly language, where alphabet is the ASCII characters.
Observations About Finite Automata

- ability to trace

- transitions out of a state are unique

- errors

- size of this language

- DFA M and language $L(M)$
Finite Automata Example 2

Example: MIPS labels, where the alphabet is ASCII characters.
More Finite Automata Examples

Let $\Sigma = \{a, b, c\}$.

- strings with exactly one a and exactly one b and no c’s
- strings with one a, one b and one c
- strings with at least one a
- string with an even number of a’s
More Finite Automata Examples

Let $\Sigma = \{a, b, c\}$.

- strings with an even number a’s and odd number of b’s

- strings with an even number a’s or odd number of b’s
DFA summary

- a.k.a. finite state machines
- start state
- final/accepting states
- implicit error state
- accepted and rejected words
- \(L(M) \) – the language recognized by DFA \(M \)
- Notice that \(L(M) = L(M') \) even though \(M \neq M' \)
Formal Definition

A DFA is a 5-tuple $(\Sigma, Q, q_0, A, \delta)$ where

- finite alphabet Σ
- finite set of states Q
- start state q_0
- set of final/accepting states $A \subseteq Q$
- transition function: $\delta : Q \times \Sigma \rightarrow Q$
DFA Interpreter Algorithm

Input: A word $w = w_1 w_2 ... w_n$, where each $w_i \in \Sigma$
Output: true if accepted, false if rejected
Implementing DFAs

Need to implement the transition function somehow
Where are DFAs used?
NFAs

- \(L = \{ bba, baa, bbba, bbbbaa, bbbbaa, \ldots \} \) which is either 2 b’s followed by an a, or 1 or more b’s followed by 2 a’s

- try to derive this using a DFA
NFAs

- $L = \{bba, baa, bbbaa, bbbbaa, \ldots\}$ which is either 2 b’s followed by an a, or 1 or more b’s followed by 2 a’s
- try to derive using a nice NFA
NFA definition

Same as a DFA with the following change:

\[T : Q \times \Sigma \rightarrow 2^Q \]

That is, we can be in a set of states, and thus \(T \) is a \textit{relation} instead of a function.
NFA Interpreter Algorithm

Input: A word $w = w_1w_2...w_n$, where each $w_i \in \Sigma$
Output: true if accepted, false if rejected
Implementing an NFA interpreter
Differences between NFAs and DFAs
A few words about the subset construction

Apply the subset construction on the example language

\[L = \{ bba, baa, bbba, bbbba, bbbbbba, \ldots \} \] which is either 2 b’s followed by an a, or 1 or more b’s followed by 2 a’s
Review

▶ An example comparing DFAs and NFAs: create an NFA (then a DFA) for all words over $\Sigma = \{a, b\}$ with the subword aba in them.

▶ Can convert between an NFA and DFA using the subset construction

 ▶ define each set of states that can be occupied at the same step
 ▶ one state in the DFA for each unique set of states in the NFA
Killer app for Finite Automata/Transducers

Scanner: see asm.*