Lecture 13

Top-Down Parsing

CS 241: Foundations of Sequential Programs
Winter 2018

Troy Vasiga et al
University of Waterloo
Given a grammar G and a word w, find a derivation for w.

Two strategies:

1. **Top-down**: find a non-terminal and replace it with a right-hand side of a rule.

2. **Bottom-up**: replace a right-hand side with a non-terminal.

In both of the above strategies, we have to make the correct decision at each step.
Parsing Algorithm

- There is a backtracking algorithm for parsing in any CFG
 - try each rule in turn
 - if we can move “forward”, do so
 - if we cannot move “forward”, go back a step and try the “next” rule
 - stop when we find the derivation

- Backtracking is not practical.

- We will look at two (linear-time) algorithms.
For top-down parsing, we use a stack to remember information about our derivations and/or processed input.
Augmenting Grammars

Empty words and empty stacks can cause hassles.

We augment our grammars by adding “beginning” and “ending” characters.

Example:

2. $S \rightarrow AyB$
3. $A \rightarrow ab$
4. $A \rightarrow cd$
5. $B \rightarrow z$
6. $B \rightarrow wz$
A simple parse
Top-down parsing with a stack

Invariant:

\[\text{derivation} = \text{input already read} + \text{stack} \]
Stack Example

<table>
<thead>
<tr>
<th>Derivation</th>
<th>Input read</th>
<th>Input to be read</th>
<th>Stack</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Observations:

How do we apply these rules? What does “expand” mean?

How do we know we are done?

How to know which rule to use?
LL(1) Parsing

We need: \(\text{Predict}(A, x) = A \rightarrow \alpha \) so long as

- \(A \) is on top of the stack, and
- \(x \) is the first symbol of input to be read

Definition of an LL(1) grammar:

Meaning of:

- \(L \)
- \(L \)
- \(1 \)
Constructing a Predictor Table

CFG:

1. $S' \rightarrow \vdash S \dashv$
2. $S \rightarrow AyB$
3. $A \rightarrow ab$
4. $A \rightarrow cd$
5. $B \rightarrow z$
6. $B \rightarrow wz$

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>y</th>
<th>w</th>
<th>z</th>
<th>⊢</th>
<th>\dashv</th>
</tr>
</thead>
<tbody>
<tr>
<td>S'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Constructing a Predictor Table (with ϵ)

CFG:
1. $S' \rightarrow \vdash S \dashv$
2. $S \rightarrow AyB$
3. $A \rightarrow ab$
4. $A \rightarrow cd$
5. $B \rightarrow z$
6. $B \rightarrow wz$
7. $B \rightarrow \epsilon$

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>y</th>
<th>w</th>
<th>z</th>
<th>\vdash</th>
<th>\dashv</th>
</tr>
</thead>
<tbody>
<tr>
<td>S'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Algorithm to construct predicator table

Below, $\alpha, \beta \in (N \cup T)^*$, $x, y \in T$, $A \in N$

Empty(α) = true if $\alpha \Rightarrow^* \epsilon$

First(α) = \{ x | $\alpha \Rightarrow^* x\beta$ \}

Follow(A) = \{ y | $S' \Rightarrow^* \alpha Ay \beta$ \}

Predict(A, x) =

13
Input: w
push S'
for each $x \in w$

 while (top of stack is some $A \in N$) {
 pop A
 if $\text{Predict}(A, x) = \{A \rightarrow \alpha\}$
 push α
 else
 reject
 }

 pop c
 if $c \neq x$ reject

end for
accept w
Non LL(1) Grammars
Converting non-LL(1) grammars to LL(1) grammars

Factoring
A non LL(1) language

\[L = \{ a^n b^m | n \geq m \geq 0 \} \]

Grammar (ambiguous)

Grammar (unambiguous)