1 Assembly basics

- Recall that binary data has no meaning on its own: we need to be told (or come up with) an interpretation for it. Give five different possible ways we could interpret 0101:
 1. The decimal number 0101.
 2. The 4-bit unsigned number 5.
 3. The 4-bit signed (two’s complement) number is also 5.
 4. The hex digit 0x5.
 5. An array of 4 boolean.
 6. An 4-bit color value.
 7. This list is by no means comprehensive: these are just a few ideas.

- What is the decimal range of unsigned n-bit binary numbers?
 Solution: 0...2^n – 1

- Convert the 8-bit binary number 01101001 into decimal.
 Solution: 105.

- Convert the following numbers into unsigned 8-bit binary:

 1. 35
 - 35/2 = 17 remainder 1
 - 17/2 = 8 remainder 1
 - 8/2 = 4 remainder 0
 - 4/2 = 2 remainder 0
 - 2/2 = 1 remainder 0
 - 1/2 = 0 remainder 1
 So 35_{10} = 00100011_2. Working backwards, 100011_2 = 25 + 21 + 20 = 32 + 2 + 1 = 35. Could also use the subtraction method, subtracting 32, 2, and 1.
 2. 216
 - 216/2 = 108 remainder 0
 - 108/2 = 54 remainder 0
\[54/2 = 27 \text{ remainder } 0 \]
\[27/2 = 13 \text{ remainder } 1 \]
\[13/2 = 6 \text{ remainder } 1 \]
\[6/2 = 3 \text{ remainder } 0 \]
\[3/2 = 1 \text{ remainder } 1 \]
\[1/2 = 0 \text{ remainder } 1 \]

So \(216_{10} = 11011000_2 \). Working backwards, \(11011000_2 = 27 + 26 + 24 + 23 = 128 + 64 + 16 + 8 = 216 \). Could also use the subtraction method, subtracting 128, 64, 16, and 8.

1.1 Two’s Complement

- Try the following 8-bit binary:
 1. 12 in binary is 1100, so with 8 bits, it is 00001100. Flipping all the bits we get \(-12_{10} = 11101100_2\).
 2. Since \(b = 8 \) we need to encode \(2^8 - 123 = 133 \). Using the above method: \(-123_{10} = 133_{10} = 10000101_2\). Remember that both this number and the previous one only hold in 8 bits!
 3. We’ll use the first method to get \(-15\). First, notice that 15 is 1 less than \(2^4 \), so \(15_{10} = 00001111_2 \). Flipping the bits we get \(11110000 \), and adding 1 we get \(11110001 \). Now flipping the bits again we get \(00001111 \), and adding 1 we get \(00001111_2 \), which is 15!

Now let’s try this with 128. \(128 = 2^7 \) we can just observe that \(128_{10} = 10000000_2 \). Then \(-128 = 01111111 + 1 = 10000000 \). So \(-128 = 10000000 \) as well! \(-128 = 128 \) as we would like, but it’s also \(-128\)!

In general, in \(b \)-bit two’s complement notation, the number \(2^{b-1} \) is equal to itself when negated. By convention we decide this number is negative, but this means we have one more negative number than positive numbers!

2 Assembly Basics

2.1 Exercise

Assemble the following program by first writing out its binary representation, then converting it to a hexadecimal representation, and finally using \texttt{cs241.wordasm} to make it executable. What does it do? Run it with \texttt{mips.twoints} to verify it behaves as you’d expect.

```mips
lis $5
.word 7
add $1, $1, $5
sub $1, $5, $0
jr $31
```

Solution:

To encode \texttt{lis $5} we need to encode 5 in 5-bit unsigned binary and then insert it into the appropriate place in the \texttt{lis} instruction pattern described on the MIPS reference sheet. \(5 = 00101 \), so inserting \texttt{ddddd = 00101} we get \texttt{00000000000000000010100000010100}. After doing the same for all instructions (\texttt{jr $31} is left as an exercise since it’s an assignment question):
Next we need to convert them into hex. Every group of 4 binary digits corresponds to one hex digit: you might find it easiest to use a conversion chart, to convert from binary to decimal and then decimal to hex, or to memorize the bit patterns. Regardless of which method you choose you should end up with:

```
.word 0x2814
.word 0x7
.word 0x250820
.word 0xA00822
```

At this point (after adding the `jr $31` instruction) we’re ready to compile and run our program!