Assembling instructions automatically

1. slt $d, $s, $t.

 Solution: d, s, and t all fit in 32-bit signed integers since they are 5-bit unsigned ints, so we can keep them unchanged. So we can do the following:

   ```
   int s, t, d //assume these are initialized appropriately
   //Begin with the opcode for slt, which is 101010
   int slt = 0x2A //0000 0000 0000 0000 0000 0000 0010 1010
   slt = slt | (s << 21) //0000 00ss sss0 0000 0000 0010 1010
   slt = slt | (t << 16) //0000 00ss ssst tttt 0000 0010 1010
   slt = slt | (d << 11) //0000 00ss ssst tttt dddd d000 0010 1010
   ```

 We could also make sure that register integers only contain 5-bit integers by first taking $s \& 0x1F$ and similar for t and d, but this isn’t necessary since our scanner already checks this.

2. beq s, t, i, where i is an immediate value (INT or HEXINT token).

 Solution: Proceeding similar to the above:

   ```
   int s, t, i //assume these are initialized appropriately
   //Begin with the opcode for beq, which is 000100
   //However, we need to make sure it’s on the left 6
   //bits rather than the right 6 bits since beq is immediate-format!
   beq = 0x10000000 //0001 0000 0000 0000 0000 0000 0000 0000
   //Now add s, t in the same way as before
   beq = beq | (s << 21) //0001 0000 ssss 0000 0000 0000 0000
   beq = beq | (t << 16) //0001 0000 ssst tttt 0000 0000 0000
   //Finally, add i. We need to make sure to clear its most significant bits first!
   beq = beq | (i & 0xFFFF) //0001 0000 ssst tttt iiiii iiiii iiiii
   ```

 Note that we need to make sure to zero out the high bits of i before adding it to the instruction! In what cases can we get undesirable behaviour if we forget?

How could we design our code to maximize code reuse between various instructions?

Solution: have generic functions for any register or immediate-format instruction which simply accept s, t, d, f or s, t, i, o respectively as arguments.
1 Regular Expression Solutions

Regular languages:
1. \{0, 1\} \{0\} \{0, 1\} \{1\} \{0, 1\}^*
2. \{0, 1\}^* \{1\} \{0\} \{0\} \{1\} \{0, 1\}^*

Regular expressions:
1. (a) \((0 | 1)0(0 | 1)1(0 | 1)1^*\)
 (b) \((0 | 1)^*110101(0 | 1)^*\)
 Doesn’t that feel much better?
2. Naive solution: \((aa | ab | ba | bb)\). Better solution: \((a | b)(a | b)\)
3. The regular expression for a term is: \((a | b)\)
 The regular expression for an operator is: \((+ | - | \cdot | /)\)
 The structure of an arithmetic expression is term operator term operator term ... operator term. An expression must start with a term: \((a | b)\)
 Then we have “operator term” repeated 0 or more times after the initial term:
 \((a | b)((+ | - | \cdot | /)(a | b))^*\)

4. The first thing we realize is that we must have at least one 1. This will be the basis for our regular expression: 1
 What can come before the first 1? As many even counts of 0’s as we like, mixed with any number of 2’s: \(2^*(02^*02^*)^*\). Note that we need the leading 2* since otherwise we could never have leading 2’s.
 What can proceed the first 1? The same as can precede it plus any number of 1’s as well: \((1 | 2)^*(0(1 | 2)^*0(1 | 2)^*)^*\)
 So we have: \(2^*(02^*02^*)^*1(1 | 2)^*(0(1 | 2)^*0(1 | 2)^*)^*\). Does this solve our problem?
 No. Because we could have an odd number of 0’s on the left and right of the first 1 and still have an even number of 0’s. How do we fix this? By either have 1 or having 1 with a 0 on the left and a zero on the right. Note that we will also have to allow for additional 2’s on the left and additional 1’s and 2’s on the right. The new core becomes \((1 | (02^*1(1 | 2)^*0)^*\)
 Combining this with our original left and right pieces we get:
 \(2^*(02^*02^*)^* \{1 | (02^*1(1 | 2)^*0)^*\} (1 | 2)^* \{0(1 | 2)^*0(1 | 2)^*\}\)

2 DFA Solutions

1. We want to find a DFA for the language of strings over a,b,c with an an a and an even number of cs. Our DFA should accept strings such as \(ab, abc\) and \(ab\) and \(cb\) and \(abb\) while rejecting strings like \(baabc, babccc\) and the empty string.

 Generally, a good way to approach DFA problems is to think about what states you will need to differentiate strings that are not in the language from strings that are in the language. Once you figure out the set of states, filling in the transitions is often straightforward.

 For example, we might have a state labelled “one a, even c”, which we enter whenever we have consumed an a and an even number of cs. It should be an accepting state, since these are precisely the strings we want to accept. To differentiate between these strings and ones not in the language, we might need
to create states representing other possibilities. Namely, “one a, odd c”, “no a, even c”, “no a, odd c”, “> one a, odd c”, “> one a, even c”. None of these states should be accepting. Note that we do not need to explicitly create the states “> one a, odd c” and “> one a, even c”, because once we read more than one ‘a’ there is no way that the string can possibly be accepted: we are essentially in an error state.

2. Following the advice from the previous problem, we can be in four possible configurations: evenness and oddness of a and b. Reading a new a or b simply toggles the evenness of that letter and has no effect on the other letter. As a result we get:

3. In this problem, we want a DFA that recognizes binary strings ending in 1011. For example, 1011, 0001011, and 1011011101001011 should be accepted, and strings such as 1010110 and anything else not ending in 1011 should be rejected.

We proceed once again by figuring out what states are necessary to recognize this language. Sometimes when you are not sure what states you will need, it is helpful to pick a simple example string from the language and figure out what states you will need to recognize just that particular string. For example, it is clear that the states and transitions shown below are required to recognize 1011:
Think about what these states correspond to. If you are in the state 1 that means the string you have
read ends in 1, and you must read 011 to obtain a string in the language. If you are in the state 101,
the string you have read ends in 101 and you only have to read 1 to get a string in the language.
The states track how much of the terminating suffix 1011 we have seen, and how much we still need to
see to complete the suffix. If the entire suffix is read, we will be in the accepting state 1011. Otherwise,
we will be in one of the intermediate states leading up to it.

To complete the DFA, we just need to fill in the missing transitions one by one.

- When we are in the initial state, we still need to see the characters 1011 in order to reach the
 accepting state. If we next read a 0, we haven’t seen the first character of that suffix, so we loop
 on 0.
- When we are in the 1 state, our string ends in 1 and we still want to see 011. If we read a 1, our
 string ends in 11 and we still want to see 011. This means we must loop on 1.
- When we are in the 10 state, our string ends in 10 and we still want to see 11. If we read a 0, our
 string ends in 100, which means we must see the entire suffix 1011 next to reach the accepting
 state. So we return to the initial state on 0.
- When we are in the 101 state, our string ends in 101 and we still want to see 1. If we read a 0,
 our string ends in 1010, which means we need to see 11 to reach the accepting state. So we should
 go to the state 10 on 0.
- When we are in the accepting state 1011, our string ends in the desired suffix. If we read a 1, it
 ends in 10111, which means we must see 011 next to reach the accepting state, so we transition
to state 1. If we read a 0, it ends in 10110, so we transition to state 10.

We obtain this DFA, which accepts the desired language:

If we wanted to modify this to allow 1011 to appear in the middle of the string, we simply need the
final state to loop back to itself on any input instead of moving back to earlier states.

4. We want to find a DFA that recognizes strings over the alphabet 0,1,2,3 which are integers with a digit
sum of 3, and may have leading zeros. For example, 120 should be in the language since 1 + 2 + 0 =
3, and 0003 should be in the language since 0 + 0 + 0 + 3 = 3, but 20 and 231 should not be in the
language since their digit sums are 2 and 6, respectively.

Once again, the best way to think about this problem is to think about what states we could use to
distinguish strings in the language from those not in the language. Since we want to accept strings
with a digit sum of 3, it make sense to have our states track the digit sum. We can have an accepting
state called 3, which represents that the sum of the digits we have read so far is 3. Then we can have
non-accepting states called 0, 1 and 2 corresponding to each of those digit sums. We also want to reject
all strings with a digit sum larger than 3; we could add another non-accepting state called something
like >3 to represent this.
The transition function can then be defined very easily. If we are in state \(x \) and the symbol \(i \) is next in the input, then the digit sum of the integer we have seen so far is \(x \) and the new digit sum after reading \(i \) will be \(x+i \). Thus we should have transitions from state \(x \) on symbol \(i \) to state \(x+i \) if \(x+i \) is less than or equal to 3, or to state \(>3 \) if \(x+i \) is greater than 3. For example, we would have a transition from state 1 on the symbol 2 to state 3, since \(1 + 2 = 3 \), and a transition from state 3 on symbol 1 to state \(>3 \) since \(3 + 1 > 3 \).

Filling in all the transitions in this way, we get the following DFA:

Notice that the \(>3 \) state is not only non-accepting, but it loops back to itself on every symbol. Instead of drawing this state, we could use the implicit error state convention discussed in class. If a transition is not drawn on the DFA diagram, we can assume it implicitly goes to a non-accepting error state that loops back to itself on every symbol, and thus if we encounter an undefined transition when trying to recognize a string, the input will be rejected. Using this convention lets us remove the \(>3 \) state from the diagram and make it simpler (though we would still have to list the error state in a formal description of this DFA).

5. We want to find a DFA that recognizes strings over the alphabet \(a,b,c \) which end in \(cab \) and have an even number of \(a \)'s. Since \(cab \) itself has one \(a \), which is an odd number of \(a \)'s, there must be at least one \(a \) before \(cab \). So the smallest string in our language is \(acab \). We can build a DFA to accept this string:

Now, like for problem 2, we simply need to fill in the missing transitions:

- From the initial state if we see \(b \) or \(c \) it doesn’t change the number of \(a \)'s in the string so we loop.
- From the odd \(a \)'s state if we see an \(a \) we go back to the even \(a \)'s state, if we see a \(b \) the number of \(a \)'s don’t change so we loop.
- From the end \(c \) state if we see a \(c \) we loop because we still could be reading the first letter of \(cab \), if we see a \(b \) we cannot be in a \(cab \) so we return to the odd \(a \)'s state.
• From the end ca state if we see a c we return to the even a’s state, if we see an a we return to the odd a’s state.

• From the end cab state if we see a b or c we return to the even a’s state, and if we see an a we return to the odd a’s state.