CS 241 – Week 5 Tutorial

Regular Languages: DFAs and Regular Expressions

Winter 2015

Summary

- DFA problems
- Regular Expressions

1 Regular Languages Review

An alphabet (denoted Σ) is a finite set of symbols.

- \{a,b,c\}
- \{b\}
- \{to, be, or, not\}
- \{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F\}

A word (over an alphabet Σ) is finite sequence of symbols from Σ.

Example

- bac, aba, c given that \(\Sigma = \{a,b,c\} \)
- \(\varepsilon, b, bb, bbb \) given that \(\Sigma = \{b\} \)
- to be or not to be, not to be (one word formed from the alphabet)
 \(\Sigma = \{to, be, or, not\} \)
- DEADBEEF, FACE given that \(\Sigma = \{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F\} \)

A language is a set of words. A Regular Language \(R \) is a sets of words where either:

- \(R \) is the empty language
- \(R \) contains a single word
- \(R \) is the union of two regular languages
- \(R \) is the concatenation of two regular languages
- \(R = L^* = \bigcup_{i=0}^{\infty} L^i \) where \(L \) is a regular language, \(L^0 = \{\varepsilon\} \) and for \(i > 0, L^i = L \cdot L^{i-1} \)
Deterministic Finite Automaton (DFA)

A Deterministic Finite Automaton (DFA) is a 5-tuple \((\Sigma, Q, q_0, \mathcal{A}, \delta)\) where:
- \(\Sigma\) – the input alphabet
- \(Q\) – finite set of states
- \(q_0 \in Q\) – a starting state in the set of states
- \(\mathcal{A} \subseteq Q\) – set of accepting states
- \(\delta : Q \times \Sigma \rightarrow Q\) – the transition function

Regular Expressions

Regular expressions are a means of expressing regular languages using combinations of symbols and specialized operations:
- Concatenation \((ab)\) - a matching word has \(a\) followed by \(b\)
- Alternation \((a|b)\) - a matching word has \(a\) or \(b\) but not both
- Repetition \((a^*)\) - a matching word has \(0\) or more occurrences of \(a\)

Furthermore, we can group expressions into subexpressions using parenthesis. For example, \(a(a|b)^*\) matches an \(a\) followed by \(0\) or more \(a\)'s and \(b\)'s. Note that this is all essentially just shorthand for the rather verbose set notation for regular languages.

2 DFA Problems

Draw DFA diagrams for the following languages:

1. The language of strings over \(\Sigma = \{a, b, c\}\) that contain only one \(a\) and an even number of \(c\)'s (no restriction on number of \(b\)'s).
2. The language of strings over \(\Sigma = \{0, 1\}\) that end in \(1011\).
3. The language of strings over \(\Sigma = \{0, 1, 2, 3\}\) which are integers whose digit sum is \(3\). Leading zeros are permitted.
4. The language of strings over \(\Sigma = \{a, b, c\}\) that end in \(cab\) and contain an even number of \(a\)'s (no restriction on the number of \(b\)'s or \(c\)'s).

3 Regular Expression Problems

Build the following languages using combinations of finite languages with regular operations (set notation):

1. Construct the language of binary strings whose second letter is a ‘0’ and whose 5th is a ‘1’.
2. Construct the language of binary strings that contain the substring “110101”.

Provide a regular expression for each of the following languages:

1. \(\Sigma = \{x, y\}, L = \{xx, xy, yx, yy\}\)
2. \(\Sigma = \{G, C, A, T\}, L = \)all strings containing GACAT
3. Convert your solutions to the two regular language problems above into regular expressions.

4. Strings over the alphabet \(\Sigma = \{a, b, +, -, *, /\} \) representing valid arithmetic expressions with no parentheses. All operators should be binary (thus \(a + b \) is not valid) and multiplication must be written explicitly (thus \(a * b \) is valid but \(ab \) is not).

5. \(\Sigma = \{0, 1, 2\}, L = \{x \in \Sigma^* | x \text{ contains an even number of 0's and at least one 1.}\} \)