Due Wednesday, May 17, by noon, to Crowdmark.

All submitted work must be the student’s own.

Question 1 (12 marks).
For each of the propositional formulas given below, determine with proof whether the formula is a contradiction (i.e. not satisfiable), satisfiable and not a tautology, or a tautology (i.e. a valid formula). Use truth tables and/or valuation trees to justify each answer.

(a) \(((p \rightarrow q) \rightarrow (\neg p)) \)

(b) \(((\neg(p \rightarrow q)) \rightarrow p) \)
Question 2 (12 marks).
Prove or disprove each of the following semantic entailment statements. Use truth tables and/or valuation trees to justify your answers.

(a) \{ (p \rightarrow q), ((p \rightarrow q) \rightarrow p) \} \models p

(c) \(((p \rightarrow q) \rightarrow p) \land (\neg p))
(b) \(\{ (p \rightarrow q), ((p \rightarrow q) \rightarrow p), (r \land (\neg r)) \} \vDash (((p \rightarrow q) \rightarrow p) \land (\neg p)) \)
(c) \{(p \rightarrow q), ((p \rightarrow q) \rightarrow r)\} \models (r \rightarrow q)
Question 3 (9 marks).
Consider the two fragments of code given below, where \(P_1, P_2, \) and \(P_3 \) are blocks of code.

Fragment #1

```cpp
if ( !a || b ) {
    if ( !a && !b ) { \( P_1 \) }
} else {
    \( P_2 \)
} if ( ( !a || b ) || ( a && !b ) ) { \( P_3 \) }
```

Fragment #2

```cpp
if ( !a && !b ) { \( P_1 \) }
else if ( !b ) { \( P_2 \) }
\( P_3 \)
```

(a) For each fragment, express in propositional logic the conditions under which each of the blocks of code \(P_1, P_2, \) and \(P_3 \) will be executed. Do NOT simplify for this part.

For Fragment #1:

- \(P_1: \)
- \(P_2: \)
- \(P_3: \)

For Fragment #2:

- \(P_1: \)
- \(P_2: \)
- \(P_3: \)

(b) Using the algebraic equivalence rules, show that Fragment #1 and Fragment #2 have the same behavior.
Question 4 (8 marks).
This problem is about adequate sets of connective symbols. Recall that a set \(S \) of connective symbols is adequate for propositional logic if every propositional formula can be written using only the connective symbols from \(S \).

(a) Let \(\downarrow \) be a connective symbol, with the value of \(p \downarrow q \) being given in the following table.

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(p \downarrow q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Prove that \(\{ \downarrow \} \) is an adequate set of connectives for propositional logic.

(b) Prove that \(\{ \lor, \land \} \) is not an adequate set for propositional logic.