In the proof below, what rule justifies the last step?

1. \((q \rightarrow r)\) \hspace{0.5cm} \text{Premise}
2. \((p \rightarrow r)\) \hspace{0.5cm} \text{Premise}
3. \(((p \lor q) \rightarrow r)\) ??

A: \(\lor e\)
B: \(\rightarrow i\)
C: Some other rule, not listed.
D: No justification exists.
In the partial proof below, what formula should occur at line 3?

1. \((q \rightarrow r)\) Premise
2. \((p \rightarrow r)\) Premise
3. ??? Assumption

\[\vdots \]

\[n - 1. \]

\[n. \quad ((p \lor q) \rightarrow r) \quad \rightarrow i \]

A: \(p\) D: Any of those three.
B: \(q\) E: Other.
C: \((p \lor q)\)
In the following proof, at which line does the first error occur?

1. \((p \rightarrow q)\) Premise

2. \(p\) Assumption

3. \(q\) \(\rightarrow\)e: 2, 1

4. \(q\) Reflexivity: 3

A: Line 2.
B: Line 3.
C: Line 4.
D: No error exists.
Suppose that a proof contains the formula

\[(p \rightarrow (q \lor r))\]

Of the four rules

→i, ∨i, ¬¬e, and ∨e,

how many could, in principle, be used to justify the formula?

A: None of the rules could be used.
B: One and only one.
C: Either of two of those.
D: Three, but not all four.
E: Any of the four.
In the proof at right, what rule(s) could be used at the last line, (to yield some formula φ)?

1. $(p \to r)$ Premise
2. $(q \to s)$ Premise
3. $(p \lor q)$ Premise
4. p Assumption
5. r $\to e: 1, 4$
6. q Assumption
7. s $\to e: 2, 6$
8. φ ???

A: $\to i$
B: $\lor i$
C: $\lor e$
D: Two of the above (not the third)
E: Any of the above