In the inductive step, there is also the case that α is $(\neg \gamma)$ (that is, \star is \neg and β is missing).

The proof for property A is the same; for B, remove “β” wherever it occurs. For C, take $|\beta|$ to be zero, which eliminates some cases.

Also, under property C (whether β is present or not), some cases for β' are incomplete or missing.

If β' is absent, then \star' is the first symbol of β; by hypothesis, this cannot be a connective.

Similarly, in the case that $|\beta'| = |\beta| + 1$ (i.e., y is empty), \star' is the first symbol of γ — again not a connective, by the hypothesis.