Lecture 9

Soundness and Completeness

Let S be a proof system.

Soundness: S is sound if every proof in S is also entailed.

\[I f \Sigma \vdash_S \phi then \Sigma \models \phi. \]

Every proof in S is a logical consequence (is "true").

This gives us a method for telling that an argument does not have a proof in the system: show that the conclusion is not entailed by the premises.

Completeness: S is complete if every entailment has a proof in S.

\[I f \Sigma \models \phi then \Sigma \vdash_S \phi. \]

Every logical consequence has a proof in S.

This gives us a method for telling that an argument has a proof in the system: show that the conclusion is entailed by the premises.

An Example of Using Soundness

Show that $\{(p \lor q)\} \not\vdash_{ND} p$.

Proof: By the contrapositive of soundness.

The contrapositive of soundness in this instance is the statement:

\[if \{(p \lor q)\} \not\models p then \{(p \lor q)\} \not\vdash_{ND} p \]

It suffices then to show that the entailment does not hold.

Let t be the valuation such that $p^t = F$ and $q^t = T$. Then $(p \lor q)^t = T$.

By the definition of semantic entailment, since there is a truth valuation such that $(p \lor q)^t = T$ and $p^t = F$ then $\{(p \lor q)\} \not\models p$.

By soundness, it follows that $\{(p \lor q)\} \not\vdash_{ND} p$.

1
Theorem: Natural Deduction is sound for propositional logic.

Soundness of Natural Deduction means that the conclusion of a Natural Deduction proof is always a logical consequence of the premises:

\[\text{If } \Sigma \vdash_{ND} \alpha, \text{ then } \Sigma \models \alpha. \]

Proof: By induction of on the length of the proof (including partial proofs).

Suppose that a formula \(\alpha \) appears at line \(n \) of a partial deduction, which may have one or more open sub-proofs. Let \(\Sigma \) be the set of premises used and \(\Gamma \) be the set of assumptions of open sub-proofs. Then \(\Sigma \cup \Gamma \models \alpha \).

Base case: The shortest deductions have length 1: it is a premise or an assumption. (Exercise)

Inductive Hypothesis: the property holds for each \(n \leq k \);

Inductive Step: prove the property holds for \(k + 1 \). The case that \(\alpha' \) is an assumption or premise is trivial. If it is not one of these, then formula \(\alpha' \) must have a justification by some inference rule. One must consider each possible rule.

Case I: \(\alpha' \) was justified by *Reflexivity*. Exercise.

Case II: \(\alpha' \) was justified by \(\land i \).

Rule \(\land i \) requires that \(\alpha' = (\alpha_1 \land \alpha_2) \), where each of \(\alpha_1 \) and \(\alpha_2 \) appear at steps \(m_1 \) and \(m_2 \), respectively, where \(m_1, m_2 \leq k \). Also, any sub-proof open at steps \(m_1, m_2 \) is still open at step \(k + 1 \).

The induction hypothesis applies to both \(\alpha_1, \alpha_2 \): \(\Sigma \cup \Gamma \models \alpha_1 \) and \(\Sigma \cup \Gamma \models \alpha_2 \).

By the definition of semantic entailment, \(\Sigma \cup \Gamma \models \alpha' \) as required.

Exercise. Let \(\Sigma \models \alpha_1 \) and \(\Sigma \models \alpha_2 \). Prove that \(\Sigma \models (\alpha_1 \land \alpha_2) \)

Case III: \(\alpha' \) was justified by \(\land e \). Exercise.

Case IV: \(\alpha' \) was justified by \(\rightarrow i \).

Rule \(\rightarrow i \) requires that \(\alpha' = (\alpha_1 \rightarrow \alpha_2) \) and a closed sub-proof starting with assumption \(\alpha_1 \) at line \(j \) and ending with conclusion \(\alpha_2 \) by step \(k \) (Note: \(j \leq k \)). Also, any additional sub-proofs open (excluding the current sub-proof) when the assumption of \(\alpha_1 \) is made, is still open at step \(k + 1 \).

The induction hypothesis thus implies \(\Sigma \cup (\Gamma \cup \{\alpha_1\}) \models \alpha_2 \).

Hence \(\Sigma \cup \Gamma \models (\alpha_1 \rightarrow \alpha_2) \), as required.

Exercise. Let \(\Sigma \cup \{\alpha_1\} \models \alpha_2 \). Prove that \(\Sigma \models (\alpha_1 \rightarrow \alpha_2) \).

Case V: \(\alpha' \) was justified by \(\rightarrow e \). Exercise.
Case VI: α' was justified by $\bot i$.

Rule $\bot i$ requires that α' be the pseudo-formula \bot, and that the proof contains formulas α_1 and $\neg\alpha_1$, at steps m_1 and m_2, respectively, where $m_1, m_2 \leq k$.

Also, any sub-proof open at steps m_1, m_2 is still open at $k + 1$.

By the induction hypothesis, both $\Sigma \cup \Gamma \vDash \alpha$ and $\Sigma \cup \Gamma \vDash (\neg \alpha)$.

Thus $\Sigma \cup \Gamma$ is unsatisfiable, and $\Sigma \cup \Gamma \vDash \alpha'$ for any α'.

Exercise. Let Σ be unsatisfiable. Prove that $\Sigma \vDash \alpha$ for any α.

Case VII: α' was justified by $\bot e$. Exercise.

Case VIII: α' was justified by $\forall i$. Exercise.

Case IX: α' was justified by $\forall e$. Exercise.

Case X: α' was justified by $\neg i$. Exercise.

Case XI: α' was justified by $\neg \neg e$. Exercise.

By induction, the property holds for any k. This completes the proof of soundness.
Theorem: Natural Deduction is complete for propositional logic.

Completeness of Natural Deduction means that all logical consequences are provable in Natural Deduction.

If \(\Sigma \vdash_{ND} \alpha \), then \(\Sigma \vDash \alpha \).

For the purposes of this proof, assume \(\Sigma \) to be a finite set of premises.

Proof idea:

1. Logical consequences can be expressed as tautologies.
2. All tautologies are provable in Natural Deduction.
3. A ND proof of a tautology can be transformed into a proof from the original set of premises in the logical consequence to its conclusion.

Proof: Let \(\Sigma = \{ \alpha_1, \alpha_2, ..., \alpha_n \} \) for well-formed formulas \(\alpha_i \) (for all \(1 \leq i \leq n \)).

Lemma 1: If \(\Sigma \vDash \beta \), then \(\emptyset \vDash (\alpha_1 \rightarrow (\alpha_2 \rightarrow (... \rightarrow (\alpha_n \rightarrow \beta)...)) \).

Proof: Exercise.

Lemma 2: For any well-formed formula \(\gamma \), if \(\emptyset \vDash \gamma \), then \(\emptyset \vdash_{ND} \gamma \).

For a tautology, every line of its truth table ends with \(T \).
We can mimic the construction of a truth table using inferences in ND.

Proof of Lemma 2: Let \(\gamma \) be any formula containing atoms \(p_1, ..., p_n \). Let \(t \) be a valuation.

To prove this, we first need the following sublemma:

Sublemma: For any formula \(\gamma \) containing atoms \(p_1, ..., p_n \) and any valuation \(t \), and define \(\hat{p}_1, ..., \hat{p}_n \) as

\[
\hat{p}_i = \begin{cases}
 p_i & \text{if } p_i^t = T \\
 \neg p_i & \text{if } p_i^t = F
\end{cases}
\]

then,

- If \(\gamma^t = T \) then \(\{\hat{p}_1, \hat{p}_2, ..., \hat{p}_n\} \vdash_{ND} \gamma \)
- If \(\gamma^t = F \) then \(\{\hat{p}_1, \hat{p}_2, ..., \hat{p}_n\} \vdash_{ND} (\neg \gamma) \)

This sublemma is proved by structural induction on the formulas.
Proof: Exercise.
Hint: You will need to consider all forms of \(\gamma \) and whether it is \(T \) or \(F \) under \(t \).

Now we can construct a proof of a tautology via \(2^n \) subproofs of the possible combinations of these atoms with their negations:

1. Start with \(n \) lines of Law of Excluded Middle, one for each atom.

2. Then construct a nested subproof: first with the assumption of \(p_1 \), then another subproof with the assumption \(p_2, ..., \) then lastly a subproof with the assumption \(p_n \). Once the subproof starting with assumption \(p_n \) yields \(\gamma \), close it and open another subproof with the assumption \((\neg p_n) \). This will also yield \(\gamma \). After closing this subproof, use \(\lor e \) on the corresponding line of LEM and the two subproofs \(\gamma \).
3. Repeat to enumerate through all 2^n subproofs. Each fully nested subproof (a subproof with the open assumption of either p_i or $\neg p_i$ for all $i \leq n$) corresponds to a line of a truth table and will prove γ (this follows from the sublemma).

The proof will look like:

\begin{align*}
1. & (p_1 \lor \neg p_1) \quad \text{L.E.M.} \\
2. & (p_2 \lor \neg p_2) \quad \text{L.E.M.} \\
: & : \\
n. & (p_n \lor \neg p_n) \quad \text{L.E.M.} \\
n + 1. & p_1 \quad \text{assumption} \\
& \quad \vdots \\
& \gamma \\
& \quad \vdots \\
& \neg p_2 \quad \text{assumption} \\
& \quad \vdots \\
& \gamma \\
m. & \gamma \quad \text{\textit{\&}\textit{e}: 2, \ldots} \\
m + 1. & \neg p_1 \quad \text{assumption} \\
& \quad \vdots \\
& \vdots \\
& \gamma \quad \text{\&}\textit{e}: m + 1, \ldots \\
\ell. & \gamma \quad \text{\&}\textit{e}: 1, m - (n + 1), \ell - (m + 1) \\
\end{align*}

Where p_i is a variable in γ and each is assumed true or false, the previous sublemma provides a proof.

Lemma 3: If $\emptyset \vdash_{ND} (\alpha_1 \rightarrow (\alpha_2 \rightarrow (\ldots \rightarrow (\alpha_n \rightarrow \beta)\ldots)))$, then $\{\alpha_1, \alpha_2, \ldots, \alpha_n\} \vdash_{ND} \beta$.

Proof of Lemma 3: Transform the proof of $\emptyset \vdash_{ND} (\alpha_1 \rightarrow (\alpha_2 \rightarrow (\ldots \rightarrow (\alpha_n \rightarrow \beta)\ldots)))$ into a proof of $\{\alpha_1, \alpha_2, \ldots, \alpha_n\} \vdash_{ND} \beta$

\begin{align*}
1. & \alpha_1 \quad \text{Premise} \\
2. & \alpha_2 \quad \text{Premise} \\
: & : \\
n. & \alpha_n \quad \text{Premise} \\
: & : \\
n + m. & (\alpha_1 \rightarrow (\alpha_2 \rightarrow (\ldots \rightarrow (\alpha_n \rightarrow \beta)\ldots))) \quad \text{The proof of tautology} \\
n + m + 1. & (\alpha_2 \rightarrow (\ldots \rightarrow (\alpha_n \rightarrow \beta)\ldots))) \quad \text{Last line of the proof} \rightarrow \text{e: } 1, n + m \\
n + m + 2. & (\alpha_3 \rightarrow (\ldots \rightarrow (\alpha_n \rightarrow \beta)\ldots))) \quad \rightarrow \text{e: } 2, n + m + 1 \\
: & : \\
2n + m. & \beta \rightarrow \text{e: } n, 2n + m - 1 \\
\end{align*}

This completes the proof of completeness.