Solving the Satisfiability Problem with DNA Computing: Lipton’s algorithm

Lila Kari

University of Waterloo
The Satisfiability Problem

- **Definition** A formula $F \in \text{Form}(\mathcal{L}^p)$ is called satisfiable if there exists a value assignment v that makes the formula true, i.e., such that $v(F) = 1$.

- **The Satisfiability (SAT) Problem:**
 INPUT: A set U of propositional variables and a formula F (dependent on the variables in U) in conjunctive normal form,

 \[F = C_1 \land C_2 \land \ldots \land C_m \]

 where each clause C_i is of the form $p_1 \lor p_2 \ldots \lor p_k$ and p_j is a propositional variable from U, or its negation.

 OUTPUT: YES if a value assignment v that satisfies the formula F exists, and NO otherwise.
• If U has n propositional variables, the current best method for solving the SAT problem essentially tries all 2^n possible value assignments.

• The Satisfiability Problem is NP-complete.
Examples

- If $U = \{x, y\}$ and
 \[F = (x \lor y) \land (\neg x \lor \neg y) \]
 then the answer to the problem is YES.
 A satisfying value assignment is $v(x) = 0$ and $v(y) = 1$.
 Another satisfying value assignment is $v'(x) = 1$ and $v'(y) = 0$.

- If $U = \{x, y\}$ and
 \[F_1 = (x \lor y) \land (x \lor \neg y) \land \neg x \]
 the answer is NO because no satisfying value assignment exists, i.e. the formula F_1 is not satisfiable.
The initial test tube of our DNA program corresponds to the following graph G_n that encodes all the possible value assignments as n-bit numbers as follows:

- The graph G_n has nodes

 $$a_1, x_1, x'_1, a_2, x_2, x'_2, \ldots a_n, x_n, x'_n, a_{n+1}$$

- There are directed edges:

 - from a_k to x_k and x'_k and

 - from both x_k and x'_k to a_{k+1}

This graph is constructed so that all paths that start at a_1 and end at a_{n+1} encode an n-bit binary number (a value assignment).
At each stage, a path has exactly two choices:
– if it takes the vertex with an unprimed label, it will encode a 1,
– if it takes the vertex with a primed label it will encode a 0.

Example In the graph below, the path $a_1x'a_2ya_3$ encodes the binary number 01, which corresponds to the value assignment $\nu(x) = 0$, $\nu(y) = 1$.
Encoding the graph as a test tube

Following Adleman’s method, the graph is encoded into a test tube of DNA as follows.

- Each vertex of the graph is assigned a random DNA string of length \(l \) from \(\{A, C, G, T\} \). The length \(l = 20 \) used by Adleman should suffice.
- This name of the vertex has two parts: the first half is denoted by \(p_i \), and the second half by \(q_i \). Thus, \(p_i q_i \) is the name associated with the \(i \)th vertex.
Then, a test tube is filled with the following kinds of DNA strands:
1) For each vertex, put many copies of a 5′ → 3′ DNA sequence of the form $p_i q_i$ into the test tube.
2) For each edge from i to j, place many copies of a 3′ → 5′ DNA sequence of the form $\bar{q}_i \bar{p}_j$ (\bar{x} denotes the sequence that is the Watson-Crick complement to x).
3) Add a 3′ → 5′ sequence of length $l/2$ complementary to the first half of the initial vertex to the test tube.
 Similarly, add a 3′ → 5′ sequence complementary to the last half of the final vertex, to the test tube, i.e. add \bar{p}_1 and \bar{q}_n.
• The key is the following: Every legal path in G_n corresponds to a correctly matched sequence of vertices and edges.

• In order to see this, consider any path in the graph. It naturally consists of a sequence that alternates “vertex, edge, vertex, edge,...”

• Suppose that $v \rightarrow u$ is an edge. Then, a path that passes through v and then u fits together like “bricks”.

![brick wall image]
• The top 5' → 3' part consists of a series of “vertices”.
• The bottom 3' → 5' part consists of a series of edges.
• Note, the vertex \(v \) is encoded \(p_v q_v \) while the edge is \(\bar{q}_v \bar{p}_u \).
• Thus, the end of the vertex and the beginning of the edge can anneal since they are Watson-Crick complements.
• In the same way, the end of the edge and the beginning of the next vertex can also anneal.
Because the sequences are chosen randomly, if \(l \) is large enough, then there is a high probability that no inadvertent paths will form.

Thus, after annealing, the test tube will contain DNA encodings of all of the paths through the graph.

That is, it will encode all \(n \)-bit sequences,

That is, it will encode all the possible value assignments for the \(n \) propositional variables.
Bio-operations

- The DNA program for SAT uses the bio-operations **Extract** and **Detect**.
- \(E(t, i, a) \) denotes all of the sequences in test tube \(t \) for which the \(i \)th bit is equal to \(a \), \(a \in \{0, 1\} \).
- To implement \(E(t, i, a) \) we perform an extract operation that retains from the test tube \(t \) all the sequences that contain the name of \(x_i \) if \(a = 1 \), and the name of \(x_i' \) if \(a = 0 \).
DNA program for SAT: Example

\[F = (x \lor y) \land (\neg x \lor \neg y) \]

The computation will consists of constructing a series of tubes.

Step 1. The first tube \(t_0 \) is just the test tube that contains all 2-bit sequences (all possible value assignments for the 2 variables \(x \) and \(y \)).

Step 2.

- Let \(t_1 \) be the test tube that corresponds to \(E(t_0, 1, 1) \).
- Let the remainder be \(t'_1 \) and let \(t_2 = E(t'_1, 2, 1) \).
- Pour \(t_1 \) and \(t_2 \) together to form \(t_3 \).
- **Note:** \(t_1 \) contains all those assignments that make \(x = 1 \) and therefore make the first clause true.
From the remaining assignments, there are still some that make the first clause true, namely those that make $y = 1$. This corresponds to $E(t_1', 2, 1) = t_2$.

Thus, $t_3 = t_1 \cup t_2$ contains all the value assignments that make the first clause true, either because they make x true (these are contained in t_1) or because they make y true (these are contained in t_2).
DNA program for SAT contd.

Step 3.

• Let t_4 be the test tube that corresponds to $E(t_3, 1, 0)$.
• Let the remainder be t'_4.
• Let t_5 be $E(t'_4, 2, 0)$.
• Pour together t_4 and t_5 to form t_6.
Comments on Step 3.

From the value assignments that satisfy the first clause (contained in t_3), we have to retain only those that also satisfy the second clause. To do this, extract first the value assignments that make $\neg x$ true and put them into t_4.

From the value assignments for which $\neg x$ is false (contained in t'_4), keep only those that make $\neg y$ true (in $E(t'_4, 2, 0) = t_5$)

The union of these (contained in t_6) contains all value assignments that, besides making the first clause true, make also the second clause true.
Step 4.
Check to see if there is any DNA in the last test tube t_6. If YES, then the answer to our problem is YES, otherwise it is NO.
<table>
<thead>
<tr>
<th>Tube</th>
<th>Assignments</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_0</td>
<td>00, 01, 10, 11</td>
<td>All possible value assignments</td>
</tr>
<tr>
<td>t_1</td>
<td>10, 11</td>
<td>$t_1 = E(t_0, x, 1)$ - makes Clause 1 true ($x = 1$)</td>
</tr>
<tr>
<td>t'_1</td>
<td>00, 01</td>
<td>$t'_1 = t_0 \setminus t_1$ - the remainder of t_0</td>
</tr>
<tr>
<td>t_2</td>
<td>01</td>
<td>$t_2 = E(t'_1, y, 1)$ - makes Cl.1 true ($y = 1$)</td>
</tr>
<tr>
<td>t_3</td>
<td>10, 11, 01</td>
<td>$t_3 = t_1 \cup t_2$ - makes Cl.1 true</td>
</tr>
<tr>
<td>t_4</td>
<td>01</td>
<td>$t_4 = E(t_3, x, 0)$ - makes also Cl.2 true ($x = 0$)</td>
</tr>
<tr>
<td>t'_4</td>
<td>10, 11</td>
<td>$t'_4 = t_3 \setminus t_4$ - the remainder of t_4</td>
</tr>
<tr>
<td>t_5</td>
<td>10</td>
<td>$t_5 = E(t'_4, y, 0)$ - makes also Cl.2 true ($y = 0$)</td>
</tr>
<tr>
<td>t_6</td>
<td>01, 10</td>
<td>$t_6 = t_4 \cup t_5$ - makes both Cl.1 and Cl.2 true</td>
</tr>
</tbody>
</table>

Note that t_3 consists of all those sequences (value assignments) that satisfy Clause 1: $\{10, 11, 01\}$. In the same way, t_6 consists of those sequences from among those in t_3, that satisfy Clause 2: $\{01, 10\}$. The latter (if any) are the correct answers to the SAT problem.
The general case

Any SAT problem with \(n \) variables and \(m \) clauses can be solved with at most order \(m \) extract steps and one detect step. (By order \(m \) we mean that the number of steps is linear in \(m \).)

Let \(C_1, C_2, \ldots, C_m \) be the clauses in the formula.

We will construct a series of test tubes \(t_0, \ldots, t_m \) so that \(t_k \) is the set of \(n \)-bit numbers corresponding to the value assignments \(\nu \) such that

\[
\nu(C_1) = \nu(C_2) = \cdots = \nu(C_k) = 1.
\]

For \(t_0 \) use \(t_{\text{all}} \) of all possible \(n \)-bit numbers.

Let \(t_k \) be constructed; we will show how to construct \(t_{k+1} \).
Let C_{k+1} be the clause

$$p_1 \lor p_2 \lor \ldots \lor p_l$$

where each p_i is a literal (either a propositional variable or its negation).

For each literal x_i, operate as follows:

- If p_i is equal to x_j, then form $E(t_k, j, 1)$;
- If p_i is equal to $\neg x_j$ then form $E(t_k, j, 0)$.
 (Note that, as in the example, we perform each extraction and then use the remainder for the next one)
- Put the tubes together like in the example to form t_{k+1}.

In the end, do one detect operation on t_m to decide whether or not the clauses are satisfiable.
• In the above we assumed that the operations are perfect, i.e. that the operations are performed without error.

• The assumption that Extract gets all of the sequences is not needed. If the original test tube has many copies of the desired sequence, then we only need some reasonable probability that it is correctly extracted to make everything work properly.