While these notes may be a useful reference and provide alternate
examples for some of the material, they do not cover exactly the same
material as the current version of the course. In particular, the current
version of the course now specifically covers some C++ 11 and C++ 14
concepts that are not discussed in these notes. There will also be other
differences, and the emphasis on some concepts will be different.

As a result, these notes are not an adequate substitute for attending
lectures.

w UNIVERSITY OF
{@\ WATERLOO
School of Computer Science

CS 246
Object-Oriented Software Development

Course Notes™ Spring 2016

https://www.student.cs.uwaterloo.ca/~cs246

May 1, 2016

Outline

Introduction to basic UNIX software development tools and object-oriented program-
ming in C+ to facilitate designing, coding, debugging, testing, and documenting of
medium-sized programs. Students learn to read a specification and design software
to implement it. Important skills are selecting appropriate data structures and control
structures, writing reusable code, reusing existing code, understanding basic perfor-
mance issues, developing debugging skills, and learning to test a program.

*Permission is granted to make copies for personal or educational use.

https://www.student.cs.uwaterloo.ca/~cs246

Contents

1 Shell

1.1
1.2
1.3
1.4
1.5

1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14

1.15

2 C++
2.1
2.2
2.3
2.4
2.5

1

File System L e 3
Quoting e e e e 5
Shell Commands e 6
System Commands 9
Source-Code Management e 14
1.5.1 Global Repository e 15
1.5.2 Local Repository 15
Pattern Matching L. 16
File Permission e 19
Input/Output Redirection 21
SCript . . . o e e e e e e e e e 23
Shift 25
Shell Variables 25
Arithmetic oL e e e 27
Routine e 27
Control Structures 29
LI4.T Test . . . o o o e e 29
1.14.2 Selection e 30
1.143 Looping o o o i e e e 31
Examples e e 34
1.15.1 Hierarchical Print Script 36
1.15.2 Cleanup Script e 37
39

Design oL e 39
C/C++ CompoSItion v v v v v et e e e e e e e e e e e e e e 39
First Program e 40
Comment e e 41
Declaration L 41
25.1 BasicTypes o . e e e e e e e 42
2.5.2 Variable Declaration oo 42
2.5.3 TypeQualifier e 42
254 Literals 43
255 CGHSHING oL e e 45

iii

Y

2.6

2.7

2.8
2.9
2.10

2.11
2.12

2.13
2.14
2.15
2.16
2.17
2.18

2.19
2.20
2.21

2.22

CONTENTS

Input/Output e 47
2.6.1 Formatted /O e 48
2.6.1.1 Formats 49

2.6.1.2 0utput e e e e 50

2.6.1.3 Input e 50
Expression. o .. e e 54
277.1 COonversion v vt e e e e e e e e e e e e e e 55
272 COCICION . . . v v v it e e e e e e e e e e 56
Unformatted /O o 57
Math Operations 0t vt e e e e e e e 57
Control Structures L e e 59
2.10.1 Block e 59
2.10.2 Selectiono 60
2.10.3 Multi-Exit Loop (Review) 62
2.10.4 Static Multi-Level Exit L o 65
2.10.5 Non-local Transfer 67
2.10.6 Dynamic Multi-Level Exit 70
Command-line Arguments e e e e 71
Type Constructor o e e e e e 74
2.12.1 Enumerationo e e e e e e e e 75
2.12.2 Pointer/Reference 76
2123 AQEregateso e e e e e e e e e e e e e e 78
21231 Array e 78
21232 Structure e e e 80
21233 Union e 81
Dynamic Storage Management Lo e 82
Type Nesting o L e 85
Type Equivalence 86
Namespace o i e e e e e e e e e e e e 87
Type-Constructor Literal 0 89
Routine e 90
2.18.1 Argument/Parameter Passing 91
2.18.2 Array Parameter 93
Overloading e e e e e e 93
Declaration Before Use, Routines 95
Preprocessor L 97
2.21.1 FileInclusion e 97
2.21.2 Variables/Substitution Lo L L 98
2.21.3 Conditional Inclusion Lo 99
Object o e e e e e e 99
2.22.1 ObjectMember 101
2.22.2 OperatorMember e e e 102
2.22.3 ConstruCtor o . i e e e e e e e e e e e e e e 102
22231 Literal e 104

22232 CONVErSION . « « v v v v v e e e e e e e e e e 104

CONTENTS v

2.23
2.24
2.25
2.26
2.27

2.28
2.29
2.30
2.31
2.32

2.33

2.34

2.35

2.36
2.37

2.38

2224 DeStruCtor v v v v e e e e e e e e e e e e e e e e e e 106
2.22.5 Copy Constructor / Assignment 108
2.22.6 Initialize const/Object Member, 113
2227 StaticMember 114
Separate Compilation, Routines 115
Separate Compilation, Objects 119
Testing o o e e e e e e 122
ASSEITIONS o Lo e e e e e e e e e e e e e e e 123
Debugging e e e e e e 124
2.27.1 Debug Print Statements L L 124
Valgrind L. e e 126
Random Numbers L 129
Encapsulation e e e e 130
Declaration Before Use, Objects 135
Inheritance L e 137
2.32.1 Implementation Inheritance 137
2.32.2 Typelnheritance e 139
2.32.3 Constructor/Destructor Lo e 142
2.32.4 Copy Constructor / Assignment v v v v .. 142
2325 Overloading L 143
2.32.6 Virtual Routine L Lo 144
2327 Downcast o e e e e e 146
2.32.8 Slicing e e e e 146
2.32.9 Protected Members e 147
2.32.10Abstract Class Lo e 147
Template e e e e e e 149
2.33.1 Standard Library L 151

2.33.1.1 Vector 152

233,12 Map 155

23313 List. . . oo o e 156

233.14 foreach 158
Git, Advanced e e e 159
2.34.1 GitlabGlobal Setup L 159
2342 GitLocalSetup e e 160
2343 Modifying e e e 162
2344 Conflicts e e 166
UML . . e e 167
Composition / Inheritance Design 171
Design Patterns L e e e e e 172
2.37.1 SingletonPattern Lo 172
2.37.2 Template Method 173
2.37.3 ObserverPattern e 173
2.37.4 Decorator Pattern L e 174
2.37.5 Factory Pattern 175

Debugger e 177

vi CONTENTS

238.1 GDB 177
2.39 Compiling Complex Programs 182
2.39.1 Dependencies o ..ol e e e e 182
2392 Make 183

Index 189

1 Shell

¢ Computer interaction requires mechanisms to display information and perform operations.
e Two main approaches are graphical and command line.
e Graphical user interface (GUI) (desktop):

o icons represent actions (programs) and data (files),
o click on icon launches (starts) a program or displays data,

o program may pop up a dialog box for arguments to affect its execution.
e Command-line interface (shell):

o text strings access programs (commands) and data (file names),
o command typed after a prompt in an interactive area to start it,

o arguments follow the command to affect its execution.
e Graphical interface easy for simple tasks, but seldom programmable for complex operations.
¢ Command-line interface harder for simple tasks (more typing), but allows programming.
e Many systems provide both.
e Shell is a program that reads commands and interprets them.
e Provide a simple programming-language with string variables and few statements.

e Unix shells falls into two basic camps: sh (ksh, bash) and csh (tesh), each with slightly
different syntax and semantics.

e Focus on bash with some tcsh.

e Terminal or xterm area (window) is where shell runs.

prompt ——$ echo ${0} <— command
bash <— output
$

(© Peter A. Buhr

CHAPTER 1. SHELL

Command line begins with (customizable) prompt: $ (sh) or % (csh).

Command typed after prompt not executed until Enter/Return key pressed.

$ dateEnter # print current date
Thu Aug 20 08:44:27 EDT 2016

$ whoamiEnter # print userid

jfdoe

$ echo Hi There!Enter # print any string
Hi There!

Command comment begins with hash (#) and continues to end of line.

$ # comment text ... does nothing

$

Multiple commands on command line separated by semi-colon.

$ date ; whoami ; echo Hi There! # 3 commands
Sat Dec 19 07:36:17 EST 2016

jfdoe

Hi There!

Commands can be edited on the command line (not sh):
$ data ; Whoami ; cho Hi Therel |

position cursor, [|, with <1 and > arrow keys,

type new characters before cursor,

remove characters before cursor with backspace/delete key,
press Enter at any point to execute modified command.

o O O O

Arrow keys A/V move forward/backward through command history (see Section 1.3, p. 7).

$ A $echo Hi Therel A $ whoami A $ date Vv $ whoamiEnter
jfdoe

o press Enter to re-execute a command.
o often go back to previous command, edit it, and execute new command.

Tab key auto-completes partial command/file names (see Section 1.1).

$ ectab # cause completion of command name to echo
$ echo gitab # cause completion of file name to q1x.C

o if completion is ambiguous (i.e., more than one),
o press tab again to print all completions,
o and type more characters to uniquely identify the name.

1.1. FILE SYSTEM

1.1

$ datab # beep (maybe) $ datab # completions
dash date

$ dattab # add “t’ $ dateEnter # execute

e Most commands have options, specified with a minus followed by one or more characters,

which affect how the command operates.

$ uname -m # machine type

x86_64

$ uname -s # operating system
Linux

$ uname -a # all system information

Linux ubuntu1204-006 3.13.0-57-generic #95~precise1-Ubuntu SMP
Options are normally processed left to right; one option may cancel another.
No standardization for command option names and syntax.

Shell/command terminates with exit.

$ exit # exit shell and terminal

o when the login shell terminates = sign off computer (logout).
Shell operation returns an exit status via optional integer N (return code).

exit [N]

o exit status defaults to zero if unspecified, which usually means success.
o [N]isin range 0-255

* larger values are truncated (256 = 0, 257 = 1, etc.),

* negative values (if allowed) become unsigned (-1 = 255).

o Exit status can be read after execution (see page 24) and used to control further execu-
tion (see page 30).

File System

Shell commands interact extensively with the file system.
Files are containers for data stored on persistent storage (usually disk).
File names organized in N-ary tree: directories are vertexes, files are leaves.

Information is stored at specific locations in the hierarchy.

CHAPTER 1. SHELL

/ root of local file system
bin basic system commands
lib system libraries
usr
bin more system commands
lib more system libraries
include system include files, .h files
tmp system temporary files
home or u user files
jfdoe home directory
"y == current, parent directory
sbashrc, semacs, slogin,... hidden files
cs246 course files
a1l assignment 1 files
qix.C, q2y.h, g2y.cc, q3z.cpp
other users

Directory named “/” is the root of the file system (Windows uses “\”).

bin, lib, usr, include : system commands, system library and include files.

tmp : temporary files created by commands (shared among all users).

home or u : user files are located in this directory.

Directory for a particular user (jfdoe) is called their home directory.

Shell special character “~” (tilde) expands to user’s home directory.
~/cs246/a1/q1x.C # => /u/jfdoe/cs246/a1/q1x.C

Every directory contains 2 special directories:

[

o “a” points to current directory.

«/Ccs246/a1/q1x.C # => /u/jfdoe/cs246/a1/q1x.C

3

o “a &’ points to parent directory above the current directory.

= »/n w/Usr/include/limits.h # => /usr/include/limits.h

Hidden files contain administrative information and start with “s” (dot).
Each file has a unique path-name referenced with an absolute pathname.

Absolute pathname is a list of all the directory names from the root to the file name sepa-
rated by the forward slash character /.

/u/jfdoe/cs246/a1/q1x.C # => file q1x.C

Shell provides concept of working directory (current directory), which is the active loca-
tion in the file hierarchy.

1.2. QUOTING 5

1.2

E.g., after sign on, the working directory starts at user’s home directory.

File name not starting with ““/” is prefixed with working directory to create necessary abso-
lute pathname.

Relative pathname is file name/path prefixed with working directory.

o E.g., when user jfdoe signs on, home/working directories set to /u/jfdoe.

.bashrc # => /u/jfdoe/.bashrc
cs246/a1/q1x.C # => /u/jfdoe/cs246/a1/q1x.C
Quoting

Quoting controls how shell interprets strings of characters.

Backslash (\) : escape any character, including special characters.

$ echo .[L.]+ # globbing pattern
.bashrc .emacs .login .vimrc

$ echo \.\[\I\.\]\» # print globbing pattern
L]

Backquote () or $() : execute text as a command, and substitute with command output.

$ echo ‘whoami' # $ whoami => jfdoe
jfdoe

$ echo $(date)

Tue Dec 15 22:44:23 EST 2015

Globbing does NOT occur within a single/double quoted string.
Single quote (') : protect everything (even newline) except single quote.

o E.g., file name containing special characters (blank/wildcard/comment).

$ echo Book Report #2
Book Report

$ echo ’'Book Report #2'
Book Report #2

$echo ".[!.]x’ # no globbing
]+
$ echo "\.\[\!\.\1\«" # no escaping
AL\
$ echo '‘whoami'’ # no backquote
‘whoami'
$ echo "abc # yes newlineEnter
> cdf’ # prompt “>” means current line is incomplete
abc # yes newline
cdf
$ echo "\"’ # no escape single quote

>

6 CHAPTER 1. SHELL

A single quote cannot appear inside a single quoted string.

e Double quote (") : protect everything except double quote, backquote, and dollar sign
(variables, see Section 1.11), which can be escaped.

$echo ".[!.]«" # protect special characters

1]
$ echo "\.\[\!\.\]\x" # no escaping

VAL

$ echo "‘whoami'" # yes backquote

cs246

$ echo "abc # yes newlineEnter

> cdf"

abc # yes newline

cdf

$ echo "\"" # yes escape double quote

n

e String concatenation happens if text is adjacent to a string.

$ echo xxx"yyy" "a"b"c"d a"b"c"d"
xxxyyy abcd abcd

e To stop prompting or output from any shell command, type <ctrl>-c (C-c), i.e., press <ctrl>
then c key, causing shell to interrupt current command.

$ echo "abc

> C-c

$

1.3 Shell Commands

e A command typed after the prompt is executed by the shell (shell command) or the shell
calls a command program (system command, see Section 1.4, p. 9).

e Shell commands read/write shell information/state.

¢ help : display information about bash commands (not sh or csh).
help [command-name]
$ help cd

cd: cd [-L|-P] [dir]
Change the shell working directory.

o without argument, lists all bash commands.

¢ cd : change the working directory (navigate file hierarchy).

1.3. SHELL COMMANDS 7

cd [directory]

$cd. # change to current directory

$cd.. # change to parent directory

$ cd cs246 # change to subdirectory

$ cd cs246/a1l # change to subsubdirectory

$cd.. # where am | ?

o argument must be a directory and not a file

o cd : move to home directory, same as cd ~

o cd - : move to previous working directory (toggle between directories)
o cd ~/cs246 : move to cs246 directory contained in jfdoe home directory
o cd /usr/include : move to /usr/include directory

o cd ..: move up one directory level

o If path does not exist, ed fails and working directory is unchanged.

e pwd : print absolute path for working directory (when you’re lost).

$ pwd
/u/jfdoe/cs246

e history and “!” (bang!) : print a numbered history of most recent commands entered and
access them.

$ history $ 12 # rerun 2nd history command
1 date whoami
2 whoami jfdoe
3 echo Hi There | $!!' # rerun last history command
4 help whoami
5 cd.. jfdoe
6 pwd $ lec # rerun last history command starting with “ec”
7 history echo Hi There
Hi There

o IN rerun command N
o !l rerun last command

o Ixyz rerun last command starting with the string “xyz”

e alias : substitution string for command name.

alias [command-name=string]

69 69

o No spaces before/after “=" (csh does not have “=").

o Provide nickname for frequently used or variations of a command.

CHAPTER 1. SHELL

$ alias d=date

$d

Mon Oct 27 12:56:36 EDT 2008

$ alias off="clear; exit" # why quotes?

$ off # clear screen before terminating shell

o Always use quotes to prevent problems.
o Aliases are composable, i.e., one alias references another.

$ alias now="4d"
$ now
Mon Oct 27 12:56:37 EDT 2008

o

Without argument, print all currently defined alias names and strings.

$ alias

alias d='date’

alias now="d’

alias off=' clear; exit’

o

Alias CANNOT be command argument (see page 25).

$ alias a1=/u/jfdoe/cs246/al
$ cd at # alias only expands for command
bash: ed: a1: No such file or directory

o

Alias entered on command line disappears when shell terminates.

o

Two options for making aliases persist across sessions:

1. insert the alias commands in the appropriate (hidden) .shellrc file,

2. place a list of alias commands in a file (often .aliases) and source (see page 28)
that file from the .shellrc file.

¢ type (csh which) : indicate how name is interpreted as command.

$ type now

now is aliased to ‘d’

$ type d

d is aliased to ‘date’

$ type date

date is hashed (/bin/date) # hashed for faster lookup
$ type -p date # —-p => only print command file-name
/bin/date

$ type fred # no “fred” command
bash: type: fred: not found

$ type —p fred # no output

e echo : write arguments, separated by spaces and terminated with newline.

$ echo We like ice cream # 4 arguments, notice single spaces in output
We like ice cream

$ echo "Wle like ice cream " # 1 argument, notice extra spaces in output
We like ice cream

1.4. SYSTEM COMMANDS 9

e time : execute a command and print a time summary.

o program execution is composed of user and system time.

x user time is the CPU time used during execution of a program.

x system time is the CPU time used by the operating system to support execution of
a program (e.g., file or network access).

o program execution is also interleaved with other programs:

m

. y o o o
execution Y s u s u |sj u u

r -
x real time is from start to end including interleavings: user + system =~ real-time

o different shells print these values differently.

$ time myprog | % time myprog

real 1.2 | 0.94u 0.22s 0:01.2
user 0.9
Sys 0.2

o test if program modification produces change in execution performance

* used to compare user (and possibly system) times before and after modification

1.4 System Commands

e Command programs called by shell (versus executed by shell).

e sh/bash/csh/tcsh : start subshell to switch among shells.

$... # bash commands

$ tcsh # start tcsh in bash

% ... # tcsh commands

% sh # start sh in tcsh

$... # sh commands

$ exit # exit sh

% exit # exit tcsh

$ exit # exit original bash and terminal

e chsh : set login shell (bash, tcsh, etc.).

$ echo ${0} # what shell am | using ?

tcsh

$ chsh # change to different shell

Password: XXXXXX

Changing the login shell for jfdoe

Enter the new value, or press ENTER for the default
Login Shell [/bin/tcsh]: /bin/bash

e man : print information about command, option names (see page 3) and function.

10 CHAPTER 1. SHELL

$ man bash
information about “bash” command
$ man man

information about “man” command

e cat/more/less : print files.

cat file-list

o cat shows the contents in one continuous stream.

o more/less paginate the contents one screen at a time.

$ cat g1.h

print file q1.h completely
$ more g1.h
. # print file q1.h one screen at a time

type “space” for next screen, “q” to stop

e mkdir : create a new directory at specified location in file hierarchy.
mkdir directory-name-list
$ mkdir d d1 d2 d3 # create 4 directories in working directory

e |s : list the directories and files in the specified directory.
Is [—al][file or directory name-list]
o -a lists all files, including hidden files (see page 4)

o -l generates a long listing (details) for each file

o no file/directory name implies working directory

$ls. # list working directory (non-hidden files)
g1x.C g2y.h g2y.cc q3z.cpp
$lIs -a # list working directory plus hidden files

.bashrc .emacs .login g1x.C qg2y.h g2y.cc qg3z.cpp

e cp : copy files; with the -r option, copy directories.

cp [—i] source-file target-file
cp [—i] source-file-list target-directory
cp [-i] -r source-directory-list target-directory

o -i prompt for verification if a target file is being replaced.
o -rrecursively copy contents of a source directory to a target directory.
$ cp f1 2 # copy file f1 to f2

$ cp f1 f2 3 d # copy files f1, f2, f3 into directory d
$ cp -r d1 d2 d3 # copy directories d1, d2 recursively into directory d3

1.4. SYSTEM COMMANDS 11

e mv : move files and/or directories to another location in the file hierarchy.
mv [-i] source-file target-file
mv [—i] source-file-list/source-directory-list target-directory
o rename source-file if target-file does not exist; otherwise replace target-file.
o -i prompt for verification if a target file is being replaced.
$ mv f1 foo # rename file f1 to foo

$ mv f2 3 # delete file 3 and rename file f2 to f3
$ mv f3 d1 d2 d3 # move file 3 and directories d1, d2 into directory d3

e rm : remove (delete) files; with the -r option, remove directories.
rm [—ifr] file-list/directory-list

$rmfl f2f2 # file list
$ rm -r d1 d2 # directory list, and all subfiles/directories
$rm -r f1 d1 f2 # file and directory list

o -i prompt for verification for each file/directory being removed.
o -f (default) do not prompt for removal verification for each file/directory.
o -rrecursively delete the contents of a directory.

o UNIX does not give a second chance to recover deleted files; be careful when using
rm, especially with globbing, e.g., rm = or rm .»

o UW has hidden directory .snapshot in every directory containing backups of all files in
that directory

* per hour for 23 hours, per night for 9 days, per week for 30 weeks

$ Is .snapshot # directories containing backup files
hourly.2016-01-20_2205/ hourly.2016-01-20_2105/
daily.2016-01-20_0010/ daily.2016-01-19_0010/
weekly.2016-01-17_0015/ weekly.2016-01-10_0015/ ...

$ cp .snapshot/hourly.2016-01-20_2205/q1.h g1.h # restore previous hour

e alias : setting command options for particular commands.
$ alias cp="cp -1i"
$ alias mv="mv -1"
$ alias rm="rm -1"
which always uses the —i option (see page 10) on commands cp, mv and rm.

e Alias can be overridden by quoting or escaping the command name.

$rm —f 1 # override —i and force removal
$ "rm" -rdi # override alias completely
$ \rm -r di

which does not add the -i option.

CHAPTER 1. SHELL

e Ip/Ipstat/lprm/Ipstat : add, query and remove files from the printer queues.

lp [-d printer-name] file-list
lpstat [-d] [—-p [printer-name] |
lporm [-P printer-name] job-number

@)

if no printer is specified, use default printer (ljp_3016 in MC3016).

@)

Ipstat : -d prints default printer, -p without printer-name lists all printers

o

each job on a printer’s queue has a unique number.

@)

use this number to remove a job from a print queue.

$ Ip -d ljp_3016 uml.ps # print file to printer ljp_3016

$ Ipstat # check status, default printer ljp_3016
Spool queue: Ip (ljp_3016)

Rank Owner Job Files Total Size

1st rggowner 308 tt22 10999276 bytes
2nd jfdoe 403 uml.ps 41262 bytes

$ lprm 403 # cancel printing
services203.math: cfA403services16.student.cs dequeued
$ Ipstat # check if cancelled

Spool queue: Ip (ljp_3016)

Rank Owner Job Files Total Size

1st rggowner 308 tt22 10999276 bytes

e cmp/diff : compare 2 files and print differences.

cmp filet file2
diff filet file2

o return O if files equal (no output) and non-zero otherwise (output difference)

o cmp generates the first difference between the files.

filex | filey $ omp X y
Ilan |ahn x y differ: char 7, line 4
2 | b\n b\n
3 |c\n c\n
4 | d\n e\n
51(g\n h\n
6 | h\n i\n
7 g\n

newline is counted = 2 characters per line in files

o diff generates output describing how to change first file into second file.

1.4. SYSTEM COMMANDS 13

$ diff x y
45c4 # replace lines 4 and 5 of 1st file
<d # with line 4 of 2nd file

<g

> e

6a6,7 # after line 6 of 1st file

> i # add lines 6 and 7 of 2nd file
> g

o Useful for checking output from previous program with current program.
o ssh : (secure shell) encrypted, remote-login between hosts (computers).

ssh [=Y] [-l user] [user@] hostname

x —Y allows remote computer (University) to create windows on local computer
(home).

* —| login user on the server machine.
* To login from home to UW environment:
$ ssh -Y -l jfdoe linux.student.cs.uwaterloo.ca

. # enter password, run commands (editor, programs)
$ ssh -Y jfdoe@linux.student.cs.uwaterloo.ca

o To allow a remote computer to create windows on local computer, the local computer
must install an X Window Server.
x Mac OS X, install XQuartz
* Windows, install Xming

o scp : (secure copy) encrypted, remote-copy between hosts (computers).

scp [user1i@hosti: | source-file [user2@host2: | target-file
scp [useri@hosti: | source-file-list [user2@host2: | target-directory
scp -r [user1i@host1:] source-directory-list [user2@host2: | target-directory

* similar to cp, except hosts can be specified for each file
x paths after ;" are relative to user’s home directory
* 1f no host is specified, localhost used
$ # copy remote file /u/jfdoe/f1 to local file f1
$ scp jfdoe@linux.student.cs.uwaterloo.ca:f1 f1
$ # copy local files f1, f2, f3 into remote directory /u/jfdoe/dir
$ scp 1 2 3 jfdoe@linux.student.cs.uwaterloo.ca:dir

$ # recursively copy local directory dir into remote directory /u/jfdoe/dir
$ scp -r dir jfdoe@linux.student.cs.uwaterloo.ca:dir

o sshfs : (secure shell filesystem) encrypted, remote-filesystem between hosts.
fusermount : unmount remote-filesystem host.

sshfs [user@]host: [dir] mountpoint
fusermount -u mountpoint

* mounts a remote filesystem to a local directory

http://www.xquartz.org/
http://sourceforge.net/projects/xming/

14 CHAPTER 1. SHELL

* remote files appear to exist on local machine
* can open remote file with local editor and changes saved to remote file
- -0 auto_cache ensures that mounted files are synchronized with remote files
- -0 reconnect automatically reconnects if session disconnects
- -0 fsname=NAME names the mounted filesystem “NAME”
$ # mount remote directory /u/jfdoe/cs246 to local directory ~/cs246
$ mkdir -p cs246 # create directory if does not exist
$ sshfs jfdoe@linux.student.cs.uwaterloo.ca:cs246 ~/cs246 \
—-oauto_cache,reconnect,fsname="cs246"

... # access files in directory cs246
$ fusermount -u cs246 # unmount directory

o Make an alias to simplify the sshfs command.

1.5 Source-Code Management

o As a program develops/matures, it changes in many ways.
x UNIX files do not support the temporal development of a program (version con-
trol), i.e., history of program over time.
* Access to older versions of a program is useful.
- backing out of changes because of design problems
- multiple development versions for different companies/countries/research
o Program development is often performed by multiple developers each making indepen-
dent changes.
* Sharing using files can damage file content for simultaneous writes.
*x Merging changes from different developers is tricky and time consuming.

o To solve these problems, a source-code management-system (SCMS) is used to pro-
vide versioning and control cooperative work.

o SCMS can provide centralized or distributed versioning (CVS)/(DVS)

*x CVS — global repository, checkout working copy
* DVS — global repository, pull local mirror, checkout working copy

global | working
repository ! copy

cheékout
CVS checkin
|

global | local working
epository | repository copy

=

push) checkout
DVS ull | ™" Scheckin
|

p

1.5. SOURCE-CODE MANAGEMENT
1.5.1 Global Repository
o gitlab is a University global (cloud) repository for:
* storing git repositories,
* sharing repositories among students doing group project.
partner@... ! userid @git.uwaterloo.ca userid@linux.student.uwaterloo.ca

local repositories ! global repositories local repositories working copy
| project; project;
| 1
|
ull ull checkout

<£T—> 2 <p—> V2 ——— files
push |73 push checkin

|
l project,
1 project;
| ! pull 2 checkout
} V2 push V3 checkin files
|
|
|

o

@)

via LDAP login (top right).

o

@)

1.5.2 Local Repository

15

Click logout “=-" (top right) in Dashboard to logout.

These steps activate your account at the University repository.

Perform the following steps to setup your userid in the global repository.

Log into https://git.uwaterloo.ca/cs246/1161 (note https) with your WatlAm userid/password

o git is a distributed source-code management-system using the copy-modify-merge

model.

* master copy of all project files kept in a global repository,

* multiple versions of the project files managed in the repository,

x developers pull a local copy (mirror) of the global repository for modification,

* developers change working copy and commit changes to local repository,

* developers push committed changes from local repository with integration using

text merging.

Git works on file content not file time-stamps.

o config : registering.

$ git config --global user.name "Jane F Doe"
$ git config —-global user.email jfdoe@uwaterloo.ca

$ git config —-list
Jane F Doe
jfdoe@uwaterloo.ca

https://git.uwaterloo.ca/cs246/1161

16

1.6

CHAPTER 1. SHELL

* creates hidden file .gitconfig in home directory

$ cat ~/.gitconfig
[user]
name = Jane F Doe
email = jfdoe@uwaterloo.ca

clone : checkout branch or paths to working tree
$ git clone https://git.uwaterloo.ca/cs246/1161.git
When prompted, enter your WatlAM username and password.
pull : update changes from global repository
$ git pull
Developers must periodically pull the latest global version to local repository.

Pattern Matching

Shells provide pattern matching of file names, globbing (regular expressions), to re-
duce typing lists of file names.

Different shells and commands support slightly different forms and syntax for patterns.
Pattern matching is provided by characters, =, ?, {}, [], denoting different wildcards
(from card games, e.g., Joker is wild, i.e., can be any card).
Patterns are composable: multiple wildcards joined into complex pattern (Aces, 2s and
Jacks are wild).
E.g., if the working directory is /u/jfdoe/cs246/a1 containing files:
q1x.C, g2y.h, g2y.cc, q3z.cpp
* + matches 0 or more characters
$ echo g+ # shell globs “q+" to match file names, which echo prints
g1x.C g2y.h g2y.cc g3z.cpp
* ? matches 1 character
$ echo q+.??
g2y.cc
* {...5...} matches any alternative in the set (at least one comma)

$ echo «.{C,cc,cpp}

g1x.C g2y.cc q3z.cpp

$ echo +.{C} # no comma => print pattern
={C}

x [...] matches 1 character in the set
$ echo q[12]-
g1x.C g2y.h g2y.cc
x [L...] (" csh) matches 1 character not in the set
$ echo q[!1]+
g2y.h g2y.cc g3z.cpp

1.6. PATTERN MATCHING 17

* Create ranges using hyphen (dash)

[0-3] #=>0123
[a-zA-Z] # => lower or upper case letter
[la-zA-Z] # => any character not a letter

* Hyphen is escaped by putting it at start or end of set
[-2+]« # => malches file names starting with -, ?, or *

@)

If globbing pattern does not match any files, the pattern becomes the argument (includ-
ing wildcards).

$ echo g+~.ww q[a-z].cc # files do not exist so no expansion
g*.ww g[a-z].cc

csh prints: echo: No match.

@)

Hidden files, starting with “.” (dot), are ignored by globbing patterns

* = = does not match all file names in a directory.

o

Pattern . matches all hidden files:

29

* match “.”, then zero or more characters, e.g., .bashrc, .login, etc., and “.”, ..

x matching “.”, “..” can be dangerous

$ rm -r = # remove hidden files, and current/parent directory!!!

(XA

Pattern .[!.]+ matches all single “.” hidden files but not “.” and ““..” directories.

o

(XA

match “.”, then any character NOT a “.”, and zero or more characters
= there must be at least 2 characters, the 2nd character cannot be a dot

*
*
x .7 starts with dot but fails the 2nd pattern requiring another character
*

“..” starts with dot but the second dot fails the 2nd pattern requiring non-dot char-
acter

e find : search for names in the file hierarchy.

find [file/directory-list] [expr |

T3]

o if [file/directory-list | omitted, search working directory, *.
o if [expr] omitted, match all file names, “-name "«"”

o recursively find file/directory names starting in working directory matching pattern
“t*”

$ find -name "t«" # why quotes ?
Jtest.cc
/testdata

o —-name pattern restrict file names to globbing pattern
o ~type f | d select files of type file or directory

o -maxdepth N recursively descend at most N directory levels (0 = working directory)

18 CHAPTER 1. SHELL

o logical not, and and or (precedence order)

-not expr
expr -a expr
expr -0 expr

-a assumed if no operator, expr expr = expr -a expr
o \(expr \) evaluation order
o recursively find only file names starting in working directory matching pattern “t+”

$ find . -type f -name "t«" # same as -type f -a -name ‘t+”
test.cc

o recursively find only file names in file list (excluding hidden files) to a maximum depth
of 3 matching patterns t= or +.C.

$ find « -maxdepth 3 -a -type f -a \(-name "t+" -0 -name "«.C")
test.cc

ql.C

testdata/data.C

* egrep : (extended global regular expression print) search & print lines matching pattern in
files (Google). (same as grep -E)

egrep -irnv pattern-string file-list

o list lines containing “main” in files with suffix “.cc”

$ egrep main =.cc # why no quotes ?
g1.cc:int main() {
g2.cc:int main() {

o -iignore case in both pattern and input files

o -rrecursively examine files in directories.

o -n prefix each matching line with line number

o -v select non-matching lines (invert matching)

o returns O if one or more lines match and non-zero otherwise (counter intuitive)
o list lines with line numbers containing “main” in files with suffix “.cc”

$ egrep —n main +.cc
g1.cc:33:int main() {
g2.cc:45:int main() {

o list lines containing “fred” in any case in file “names.txt”

$ egrep —i fred names.txt
names.txt:Fred Derf

names.txt:FRED HOLMES
names.txt:freddy mercury

1.7. FILE PERMISSION 19

7 1

o list lines that match start of line , “#include”, 1 or more space or tab “[]+”, either
e 9

or “<”, 1 or more characters “.+”, either “"” or “>”, end of line “$” in files with
suffix “.h” or “.cc”

$ egrep ' “#include[1+["<].+4+[">1$’ ={h,cc} # why quotes ?
egrep: =.h: No such file or directory

gl.cc:#include <iostream>

gl.cc:#include <iomanip>

gl.cc:#include “q1.h”

o egrep pattern is different from globbing pattern (see man egrep).

[TEA]

Most important difference is “+” is a repetition modifier not a wildcard.

1.7 File Permission

e UNIX supports security for each file or directory based on 3 kinds of users:

o user : owner of the file,
o group : arbitrary name associated with a set of userids,

o other : any other user.

File or directory has permissions, read, write, and execute/search for the 3 sets of users.

o Read/write allow specified set of users to read/write a file/directory.
o Executable/searchable:

x file : execute as a command, e.g., file contains a program or shell script,

x directory : traverse through directory node but not read (cannot read file names)

Use Is -| command to print file-permission information.

drwxr—-x——-— 2 jfdoe jfdoe 4096 Oct 19 18:19 cs246
drwxr—-x——-— 2 jfdoe jfdoe 4096 Oct 21 08:51 cs245

—-rw——————-— 1 jfdoe jfdoe 22714 Oct 21 08:50 test.cc
—-rw——————-— 1 jfdoe jfdoe 63332 Oct 21 08:50 notes.tex
e Columns are: permissions, #-of-directories (including “.” and *..””), owner, group, file size,

change date, file name.

e Permission information is:

d = directory —— user permission

- =file group permissions
other permissions
Y F r P

d | rwx r x

e E.g.,d rwx r—x ———, indicates

20 CHAPTER 1. SHELL

o directory in which the user has read, write and execute permissions,
o group has only read and execute permissions,

o others have no permissions at all.
e In general, never allow “other” users to read or write your files.
e Default permissions (usually) on:

o file: rw— r—— ——- , owner read/write, group only read, other none.

o directory: rwx ——— ——-— , owner read/write/execute, group/other none.

e chgrp : change group-name associated with file.

chgrp [-R] group-name file/directory-list
o -R recursively modify the group of a directory.

$ chgrp ¢s246_05 cs246 # course directory
$ chgrp -R ¢s246_05 cs246/a5 # assignment directory/files

Must associate group along entire pathname and files.
e Creating/deleting group-names is done by system administrator.

e chmod : add or remove from any of the 3 security levels.

chmod [-R] mode-list file/directory-list

o -Rrecursively modify the security of a directory.

o mode-list has the form security-level operator permission.

o Security levels are u for user, g for group, o for other, a for all (ugo).

o Operator + adds, — removes, = sets specific permission.

o Permissions are r for readable, w for writable and x for executable.

o Elements of the mode-list are separated by commas.

chmod g-r,0-r,g-w,0-w foo # long form, remove read/write for group/others users
chmod go-rw foo # short form

chmod g=rx cs246 # allow group users read/search
chmod -R g+rw cs246/a5 # allow group users read/write, recursively

¢ To achieve desired access, must associate permission along entire pathname and files.

1.8. INPUT/OUTPUT REDIRECTION 21

1.8 Input/Output Redirection

e Every command has three standard files: input (0), output (1) and error (2).

e By default, these are connected to the keyboard (input) and screen (output/error).

1
EEEEEEREEREN 0
T command
2
$ sort -n # —-n means numeric sort
7 sort reads unsorted values from keyboard
30
5
Cd close input file
5 sort prints sorted values to screen
7
30

e To close an input file from the keyboard, type <ctrl>-d (C-d), i.e., press <ctrl> then d key,
causing the shell to close the keyboard input file.

e Redirection allows:

o input from a file (faster than typing at keyboard),

o saving output to a file for subsequent examination or processing.
e Redirection performed using operators < for input and >/ >> for output to/from other sources.

$ sort -n < input 1> output 2> errors

1> —

1>> output

input sort —

< 2>
2>>

errors

o < means read input from file rather than keyboard.

o > (same as 1>), 1>, 2> means (create if needed) file and write output/errors to file rather
than screen (destructive).

o >> (same as 1>>), 1>>, 2>> means (create if needed) file and append output/errors to
file rather than screen.

e Command is (usually) unaware of redirection.

22 CHAPTER 1. SHELL

e Can tie standard error to output (and vice versa) using “>&” = both write to same place.

$ sort -n < input >& both # stderr (2) goes to stdout (1)
$ sort -n < input 1> output 2>&1 # stderr (2) goes to stdout (1)
$ sort -n < input 2> errors 1>&2 # stdout (1) goes to stderr (2)

1 [

2>&1 | output

\

input sort —

< 1>&2

errors

¢ Order of tying redirection files is important.

$ sort 2>&1 > output # tie stderr to screen, redirect stdout to “output”
$ sort > output 2>&1 # redirect stdout to “output”, tie stderr to “output”

¢ To ignore output, redirect to pseudo-file /dev/null.

$ sort data 2> /dev/null # ignore error messages

e Source and target cannot be the same for redirection.
$ sort < data > data

data file is corrupted before it can be read.

¢ Redirection requires explicit creation of intermediate (temporary) files.

$ sort data > sortdata # sort data and store in “sortdata”

$ egrep —v "abc" sortdata > temp # print lines without “abc”, store in “temp”
$ trab < temp > result # translate a’s to b’ s and store in “result”

$ rm sortdata temp # remove intermediate files

¢ Shell pipe operator | makes standard output for a command the standard input for the next
command, without creating intermediate file.

$ sort data | grep -v "abc" | tr a b > result

e Standard error is not piped unless redirected to standard output.

$ sort data 2>&1 | grep ~v "abc" 281 | tr a b > result 2>&1

now both standard output and error go through pipe.

e Print file hierarchy using indentation (see page 4).

1.9. SCRIPT 23

1.9

$ find cs246 $ find cs246 | sed "s@[*/14/@ Qg’
cs246 cs246

cs246/at al

cs246/a1/q2y.h g2y.h

cs246/a1/g2y.cc g2y.cc

cs246/a1/g3z.cpp q3z.cpp

sed : inline editor

o pattern changes all occurrences (g) of string [*/]*/ (zero or more characters not “/” and

€6 9

then “/”, where “+” is a repetition modifier not a wildcard) to 3 spaces.

Script
A shell program or script is a file (scriptfile) containing shell commands to be executed.

#l/bin/bash [-x]

date # shell and OS commands
whoami

echo Hi There

First line begins with magic comment: “#/” (sha-bang) with shell pathname for executing
the script.

Forces specific shell to be used, which is run as a subshell.

If “#/” is missing, the subshell is the same as the invoking shell for sh shells (bash) and sh
is used for csh shells (tcsh).

Optional —x is for debugging and prints trace of the script during execution.

Script can be invoked directly using a specific shell:

$ bash scriptfile # direct invocation
Sat Dec 19 07:36:17 EST 2009

jfdoe

Hi There!

or as a command if it has executable permissions.

$ chmod u+x scriptfile # Magic, make script file executable

$./scriptfile # command execution
Sat Dec 19 07:36:17 EST 2009

jfdoe

Hi There!

Script can have parameters.

#l/bin/bash [-x]

date

whoami

echo ${1} # parameter for 1st argument

24

CHAPTER 1. SHELL

e Arguments are passed on the command line:

$ /scriptfile "Hello World"
Sat Dec 19 07:36:17 EST 2009
jfdoe

Hello World

$./scriptfile Hello World

Sat Dec 19 07:36:17 EST 2009
jfdoe

Hello

Why no World?
e Special parameter variables to access arguments/result.

o ${#} number of arguments, excluding script name
o ${0} always name of shell script
echo ${0} # in scriptfile
prints scriptfile.

o ${1}, ${2}, ${3}, ... refers to arguments by position (not name), i.e., 1st, 2nd, 3rd, ...
argument

o ${+} and ${@} list all arguments, e.g., ${1} ${2} ..., excluding script name
Difference occurs inside double quotes:

* "S${%}" arguments as a single string string, e.g., "${1} ${2} . .."
* "S${@}" arguments as separate strings, e.g., "S{1}" "${2}" ...

o ${$} process id of executing script.

o ${?} exit status of the last command executed; 0 often = exited normally.

$ cat scriptfile

#l/bin/bash

echo ${#} # number of command-line arguments
echo ${0} ${1} ${2} ${3} ${4} # some arguments

echo "S{x}" # all arguments as a single string
echo "S{@}" # all arguments as separate strings
echo ${$} # process id of executing subshell
exit 21 # script exit status

$./scriptfile a1 a2 a3 a4 a5
5 # number of arguments
scriptfile a1 a2 a3 a4 # script-name / args 1-4

al a2 a3 a4 a5 # args 1-5, 1 string
al a2 a3 a4 a5 # args 1-5, 5 strings
27028 # process id of subshell
$ echo ${?} # print script exit status

21

1.10. SHIFT 25

¢ Interactive shell session is a script reading commands from standard input.

$ echo ${0} # shell you are using (not csh)
bash

1.10 Shift

e shift [N]: destructively shift parameters to the left N positions, i.e., ${1}=${N+1}, ${2}=${N+2},
etc., and ${#} is reduced by N.

o If noN, 1 is assumed.
o If Nis 0 or greater than ${#}, there is no shift.

$ cat scriptfile $./scriptfile 123456 7
#l/bin/bash 1
echo ${1}; shift 1 | 2
echo ${1}; shift 2 | 4
echo ${1}; shift 3 |7
echo ${1}

1.11 Shell Variables

Each shell has a set of environment (global) and script (local/parameters) variables.

(X2

e variable-name syntax : [_a-zA-Z][_a-zA-Z0-9]x, “+” is repetition modifier
e case-sensitive:

VeryLongVariableName Page1 Income_Tax _75

e Keywords are reserved identifiers (e.g., if, while).

(13

e Variable is declared dynamically by assigning a value with operator “=".
$ al=/u/jfdoe/cs246/al # declare and assign

No spaces before or after “=".

e Variable can be removed.

$ unset var # remove variable
$ echo var is ${var}
var is # no value for undefined variable “var”

e Variable ONLY holds string value (arbitrary length).
$ =3 # i has string value “3” not integer 3

2

e Variable’s value is dereferenced using operators “$” or “${}”.

$ echo $a1 ${al}
/uljfdoe/cs246/a1 /u/jfdoe/cs246/al
$ cd $at # or ${atl}

26

Dereferencing an undefined variable returns an empty string.

$ echo var is ${var} # no value for undefined variable “var”
var is

$ var=Hello

$ echo var is ${var}

var is Hello

Beware concatenation.

$ cd $atdata # change to /u/jfdoe/cs246/aldata

Where does this move to?

Always use braces to allow concatenation with other text.

$ cd ${al}data # cd /u/jfdoe/cs246/a1data

Shell has 3 sets of variables: environment, local, routine parameters.

Shell (command)
Envir: $EO $E1 $E2... — 1

0 —= Local: $LO $L1 $L2...
Parms: $0 $1 $2... —2

New variable declare on the local list.

$ var=3 # new local variable

A variable is moved to environment list if exported.

$ export var # move from local to environment list

$ set # print variables/routines (and values)
HOME-=/u/jfdoe # home directory
HOSTNAME-=Ilinux006.student.cs # host computer
PATH=... # lookup directories for OS commands
SHELL=/bin/bash # login shell

CHAPTER 1. SHELL

Login shell starts with a number of useful environment variables, e.g.:

e A script executes in its own subshell with a copy of calling shell’s environment variables

$ /scriptfile # execute script in subshell

— Envir: $E0 $E1 $E2 Shell

copied

(works across different shells), but not calling shell’s locals or arguments.

~ Envir: $EO $E1 $E2... | gy phell (scriptfile)

1.12. ARITHMETIC 27

When a (sub)shell ends, changes to its environment variables do not affect the containing
shell (environment variables only affect subshells).

Only put a variable in the environment list to make it accessible by subshells.

1.12 Arithmetic

Arithmetic requires integers, 3 + 7, not strings, "3" + "17".

$ i=3+1

$ j=%{i}+2

$ echo ${i} ${j}
3+1 3+1+2

Arithmetic is performed by:

o converting a string to an integer (if possible),
o performing an integer operation,

o and converting the integer result back to a string.

bash performs these steps with shell-command operator $((expression)).
$ echo $((3 + 4 - 1))
6
$ echo $((3 + ${i} = 2))
8

$ echo $((3 + ${k})) # k is unset
bash: 3 + : syntax error: operand expected (error token is " ")

Basic integer operations, +, -, *, /, % (modulus), with usual precedence, and ().

For shells without arithmetic shell-command (e.g., sh, csh), use system command expr.

$expr3 +4-1 # for sh, csh
6

$ expr 3 + ${i} « 2 # escape «
8

$ expr 3 + ${k} # Kk is unset

expr: non-numeric argument

1.13 Routine

e Routine is a script in a script.

routine_name() { # number of parameters depends on call
commands
}

¢ Invoke like a script.

routine_name [args ... |

CHAPTER 1. SHELL

e Variables/routines should be created before used.

e E.g., create a routine to print incorrect usage-message.

usage() {
echo "Usage: ${0} -t -g —e input-file [output-file]"
exit 1 # terminate script with non-zero exit code

}

usage # call, no arguments

¢ Routine arguments are accessed the same as in a script.

$ cat scriptfile

#l/bin/bash

rtn() {
echo ${#} # number of command-line arguments
echo ${0} ${1} ${2} ${3} ${4} # arguments passed to routine
echo "${x}" # all arguments as a single string
echo "${@}" # all arguments as separate strings
echo ${$} # process id of executing subshell
return 17 # routine exit status

rtn al a2 a3 a4 a5 # invoke routine

echo ${?} # print routine exit status
exit 21 # script exit status

$./scriptfile # run script

5 # number of arguments

scriptfile a1 a2 a3 a4 # script-name / args 1-5
al a2 a3 a4 a5 # args 1-5, 1 string
al a2 a3 a4 a5 # args 1-5, 5 strings

27028 # process id of subshell
17 # routine exit status

$ echo ${?} # print script exit status
21

e source filename : execute commands from a file in the current shell.

o For convenience or code sharing, subdivided script into multiple files.

script script,
duplicate duplicate
dup
refactor sour.c.e. dup < duplicate [sour.c.e. dup
o No “#l...” at top, because not invoked directly like a script.

o Sourcing file includes it into current shell script and evaluates lines.

1.14. CONTROL STRUCTURES 29

source ./aliases # include/evaluate aliases into .shellrc file
source ./usage.bash # include/evaluate usage routine into scriptfile

o Created or modified variables/routines from sourced file immediately affect current
shell.

1.14 Control Structures

e Shell provides control structures for conditional and iterative execution; syntax for bash is
presented (csh is different).

1.14.1 Test

e test ([]) command compares strings, integers and queries files.

¢ test expression is constructed using the following:

test | operation | priority
I expr not high
\(expr\) evaluation order (must be escaped)
expr1 —a expr2 | logical and (not short-circuit)
expr1 —o expr2 | logical or (not short-circuit) low

e test comparison is performed using the following:

test | operation
string1 = string2 equal (not ==
string1 != string2 not equal

integer1 -eq integer2 | equal

integer1 -ne integer2 | not equal
integer1 —ge integer2 | greater or equal
integer1 —gt integer2 | greater
integer1 -le integer2 | less or equal
integer1 -t integer2 | less

-d file exists and directory

-e file exists

~f file exists and regular file

-r file exists with read permission

-w file exists with write permission

-x file exists with executable or searchable

¢ Logical operators -a (and) and -o (or) evaluate both operands.

e test returns O if expression is true and 1 otherwise (counter intuitive).

30 CHAPTER 1. SHELL

$ i=3

$test 3 -1t 4 # integer test

$ echo ${?} # true

0

$ ['whoami' = "jfdoe" | # string test, need spaces
$ echo ${?} # false

]

$[2 -It ${i} -0 ‘whoami' = "jfdoe"]| # compound test
$ echo ${?} # true

0

$[-eqlcc] # file test

$ echo ${?} # true

0

1.14.2 Selection

¢ An if statement provides conditional control-flow.

if test-command if test-command ; then
then
commands commands
elif test-command elif test-command ; then
then
commands commands
else else
commands commands
fi fi

Semi-colon is necessary to separate test-command from keyword.
e test-command is evaluated; exit status of zero implies true, otherwise false.

e Check for different conditions:

if ["'whoami'" = "jfdoe"] ; then
echo "valid userid"

else
echo "invalid userid"

fi

if diff file1 file2 > /dev/null ; then # ignore diff output, check exit status
echo "same files"

else
echo "different files"

fi

if [=x /usr/bin/cat] ; then

echo "cat command available"
else

echo "no cat command"
fi

1.14. CONTROL STRUCTURES 31

* Beware unset variables or values with special characters (e.g., blanks).

if [${var} = "yes’];then ... # var unset => if [='yes’]|

bash: [: =: unary operator expected

if [${var} = "yes’];then ... #var="abc’=>if[abc="yes]|
bash: [: too many arguments

if ["S{var}" ="yes’];then ... #varunset=>if[“ ="yes]

if ["S{var}" ="'yes’];then ... #var="abc’=>if[‘abc”="yes"]

“

e When dereferencing, always quote variables, except for safe variables ${#}, ${$}, ${?},
which generate numbers.

e A case statement selectively executes one of N alternatives based on matching a string
expression with a series of patterns (globbing), e.g.:

case expression in

pattern | pattern | ...) commands ,,
*) commands ;; # optional match anything (default)
esac
e When a pattern is matched, the commands are executed up to *;;”, and control exits the case
statement.

e If no pattern is matched, the case statement does nothing.
e E.g., command with only one of these options:
-h, —-help, -v, --verbose, -f file, —-file file

use case statement to process option:

usage() { ...} # print message and terminate script
verbose=no # default value
case "${1}" in # process single option

"~h’ | "--help’) usage ;;
"—v' | '--verbose’) verbose=yes ;;

T-fr | '--file’) # has additional argument
shift 1 # access argument
file="${1}"
*) usage ;; # default, has to be one argument
esac

if [${#} -ne 1] ; then usage ; fi # check only one argument remains
e # execute remainder of command

1.14.3 Looping

¢ while statement executes its commands zero or more times.

while test-command while test-command ; do
do
commands commands
done done

CHAPTER 1. SHELL

e test-command is evaluated; exit status of zero implies true, otherwise false.
e Check for different conditions:

print command-line parameters, destructive

while ["${1}" = ""]; do # string compare
echo "S${1}"
shift # destructive
done

print command-line parameters, non-destructive

i=1

while [${i} —-le ${#}] ; do
eval echo "\${${i}}" # second substitution of “${1}” to its value
i=$((${i} + 1))

done

process files datal, dataz, ...
i=1

file=data${i}

while [-f "${file}"]; do # file regular and exists?
process file
i=$((${i} + 1)) # advance to next file
file=data${i}

done

e for statement is a specialized while statement for iterating with an index over list of whitespace-
delimited strings.

for index [in list] ; do
commands

done

for name in ric peter jo mike ; do
echo ${name}

done

for arg in "${@}" ; do # process parameters, why quotes?
echo ${arg}

done

Assumes in "${@}", if no in clause.
¢ Or over a set of values:
for ((init—expr; test—expr; incr—expr)) ; do # double parenthesis
commands
done
for (i=1;i<=${#};i+=1)); do

eval echo "\${${i}}" # second substitution of “${1}” to its value
done

e Use directly on command line (rename .cpp files to .cc):
$ for file in «.cpp ; do mv "${file}" "${file%cpp}"cc ; done

% removes matching suffix; # removes matching prefix

1.14. CONTROL STRUCTURES 33

¢ A while/for loop may contain break and continue to terminate loop or advance to the next
loop iteration.

i=1 # process files datal, data2, ...
while [0] ; do # while true, infinite loop
file=data${i} # create file name

if[! -f "${file}"] ; then break ; fi # file not exist, stop ?
e # process file
if [${?} —ne 0] ; then continue ; fi # bad return, next file
process file
i=$((${i} + 1)) # advance to next file
done

34 CHAPTER 1. SHELL

1.15 Examples

e How many times does word $1 appear in file $2?

#l/bin/bash
cnt=0
for word in ‘cat "${2}™ ; do # process file one blank-separated word at a time
if ["S{word}" = "${1}"]; then
cnt=$((${cnt} + 1))
fi
done

echo ${cnt}

$./word "fred" story.txt
42

o Could fail if file is large. Why?

e Last Friday in any month is payday. What day is payday?
(““.” indicates a space).

$ cal October 2013
....October.2013
Su.Mo.Tu.We.Th.Fr.Sa
......1.2.3.4.5
.6..7..8..9.10.11.12
13.14.15.16.17.18.19
20.21.22.23.24.25.26
27.28.29.30.31

¢ Columns separated by blanks, where blanks separate empty columns
(“*” indicates empty column).

AAA N October.2013
Su.Mo.Tu.We.Th.Fr.Sa
AAANANAANAN2NB A4S
NB6.AT7.0.8.209.10.11.12
13.14.15.16.17.18.19
20.21.22.23.24.25.26
27.28.29.30.31

What column is “9” in? What column is “25” in?

o cut selects column -f 6 of each line, with columns separated by blanks -d " '

$ cal October 2013 | cut =f 6 =d ’ ’
2013
Fr

8
18
25

1.15. EXAMPLES

o grep selects only the lines with numbers

$ cal October 2013 |cut -d " * -f6 | grep "[0-9]"
2013

8

18

25

o tail -1 selects the last line

$ cal October 2013 |cut -d ’ * -f6 | grep "[0-9]" | tail -1
25

o Generalize to any month/year.

35

36 CHAPTER 1. SHELL

1.15.1 Hierarchical Print Script (see Section 1.8, p. 22)

#l/bin/bash

#

List directories using indentation to show directory nesting
#

Usage: hi [-1 | -d] [directory-name]+

Examples:

$ hi-ddirt dir2

Limitations

=+ does not handle file names with special characters

opt= ; files= ;
while [${#} -ne 0] ; do # option and files in any order
case "${1}" in
-l) opt=l 3
-d) opt=d ;;
-h | -help | —-help | -*)
echo 'Usage: hi [-1 | -d | -s] directory-list ...’ 1>&2
exit 1 ;;
x) files="${files} ${1}"
esac
shift
done
case $opt in
l) find ${files} -exec Is -Idh {} \; | sort -k9,9f | \
sed "s|\./| |" |sed's|[~ /1x/| |g" ;; # add tab then spaces

bRl

d) du -ah ${files} | sort -k2,2f | sed "s| [/1«/1 |1g" ;; # replace tab
«) find ${files} —print | sort -f | sed "s|[*/]1«/| |g" ;; # sortignore case
esac
exit 0
$ hi $ hi -d jfdoe $ hi -l
. 64K jfdoe drwx——---- 3 jfdoe jfdoe 4.0K May 1 07:05 .
jfdoe 60K cs246 drwx——---- 3 jfdoe jfdoe 4.0K May 1 07:05 jfdoe
€s246 28K al drwx——---- 4 jfdoe jfdoe 4.0K May 1 07:06 cs246
ail 4.0K qix.C drwx——---- 2 jfdoe jfdoe 4.0K May 1 07:32 ail
qix.C 8.0K g2y.cc L 1 jfdoe jfdoe 3.2K May 1 07:32 qix.C
g2y.h 8.0K g2y.h —TW——————~ 1 jfdoe jfdoe 8.0K May 1 07:32 g2y.h
g2y.cc 4.0K q3z.cpp | —rwW-—————- 1 jfdoe jfdoe 4.1K May 1 07:32 g2y.cc
g3z.cpp | 28K a2 —TW——————~ 1 jfdoe jfdoe 160 May 1 07:32 g3z.cpp
a2 16K qlp.C drwx——---- 2 jfdoe jfdoe 4.0K May 1 07:34 a2
qlp.C 4.0K g2g.cc —W——————~ 1 jfdoe jfdoe 14K May 1 07:33 qlp.C
g2g.cc 4.0K g2r.h —TW——————~ 1 jfdoe jfdoe 800 May 1 07:33 g2q.cc
g2r.h —TW——————~ 1 jfdoe jfdoe 160 May 1 07:33 g2r.h

http://www.student.cs.uwaterloo.ca/~cs246/current/codeExamples/hierprint

1.15. EXAMPLES

1.15.2 Cleanup Script

#l/bin/bash

#

List and remove unnecessary files in directories

#

Usage: cleanup [[-r | -R] [—i | f] directory-name]+
-r | -R clean specified directory and all subdirectories
—i | -f prompt or not prompt for each file removal

Examples:

$ cleanup jfdoe

§ cleanup -R .

$ cleanup -r dirt —i dir2 -r -f dir3

Limitations:

= only removes files named: core, a.out, o, =d

=+ does not handle file names with special characters

usage() { # print usage message & terminate
echo "Usage: ${0} [[-r | =R] [-1 | -f] directory-name]+" 1>&2
exit 1
defaults() { # defaults for each directory
prompt="-1i" # prompt for removal
depth="-maxdepth 1" # not recursive
remove() {

for file in Yfind "${1}" ${depth} -type f -a \(-name ’core’ -0\
-name 'a.out’ -0 -name ' x.o’ -0 -name ' «.d’ \)’

do
echo "${file}" # print removed file
rm "S{prompt}" "${file}"

done

if [${#} —-eq 0] ; then usage ; fi # no arguments ?

defaults # set defaults for directory
while [${#} -gt 0] ; do # process command-line arguments
case "${1}" in
"-r" | "-R") depth="" ;; # recursive ?
"-i" | "-£") prompt="${1}" ;; # prompt for deletion ?
"-h" | ——help | -~) usage ;; # help ?
*) # directory name ?
if[!-x"${1}"]; then # directory exist and searchable ?
echo "${1} does not exist or is not searchable" 1>&2
else
remove "S${1}" # remove files in directory
defaults # reset defaults for next directory
fi
esac
shift # remove argument
done

exit 0

http://www.student.cs.uwaterloo.ca/~cs246/current/codeExamples/cleanup

38

CHAPTER 1. SHELL

2 CH

2.1

2.2

Design

Design is a plan for solving a problem, but leads to multiple solutions.
Need the ability to compare designs.

2 measures: coupling and cohesion

Coupling is degree of interdependence among programming modules.

Aim is to achieve lowest coupling or highest independence (i.e., each module can stand alone
or close to it).

Module is read and understood as a unit = changes do not effect other modules and can be
isolated for testing purposes (like stereo components).

Cohesion is degree of element association within a module (focus).
Elements can be a statement, group of statements, or calls to other modules.
Alternate names for cohesion: binding, functionality, modular strength.
Highly cohesive module has strongly and genuinely related elements.

Low cohesion (module elements NOT related) = loose coupling.

High cohesion (module elements related) = tight coupling.

C/C+ Composition

C+ is composed of 3 languages:

1. Before compilation, preprocessor language (cpp) modifies (text-edits) the program (see
Section 2.21, p. 97).

2. During compilation, template (generic) language adds new types and routines (see
Section 2.33, p. 149).

3. During compilation,
o C programming language specifying basic declarations and control flow.

o C+ programming language specifying advanced declarations and control flow.

A programmer uses the three programming languages as follows:

user edits — preprocessor edits — templates expand — compilation
(— linking/loading — execution)

(© Peter A. Buhr

39

40 CHAPTER 2. C++

e Cis composed of languages 1 & 3.

e The compiler interface controls all of these steps.

C/C++ header files C/C++ source files
\/ _

(preprocessor) cpp
- -E, -D, -1
preprocessed source code _

(translator) cc1plus
- -W, -y, -g, -S, -01/2/3, -c

assembly code

(assembler) as

object code
other object-code . |ij (linker) } -0, -, -L

files and libraries

Ja.out object
2.3 First Program
Java | C CH+
import java.lang.*; / implicit #include <stdio.h> #include <iostream> // access to output
class Hello { using namespace std; / direct naming
public static
void main(String[] args) { int main() { int main() { / program starts here
System.out.printin("Hello!"); printf("Hello!\n"); cout << "Hello!" << endl;
System.exit(0); return O; return 0; // return 0 to shell, optional
} } }
}

e #include <iostream> copies (imports) basic I/O descriptions (no equivalent in Java).

¢ using namespace std allows imported I/O names to be accessed directly (otherwise quali-
fication is necessary, see Section 2.16, p. 87).

e cout << "Hello!" << endl prints "Hello!" to standard output, called cout (System.out in
Java, stdout in C).

e endl starts a newline after "Hello!" (println in Java, ' \n’ in C).

e Routine exit (Java System.exit) terminates a program at any location and returns a code to
the shell, e.g., exit(0) (#include <cstdlib>).

2.4. COMMENT 41

24

2.5

o Literals EXIT_SUCCESS and EXIT_FAILURE indicate successful or unsuccessful ter-
mination status.

o e.g., return EXIT_SUCCESS or exit(EXIT_FAILURE).
C program-files use suffix .c; G+ program-files use suffixes .C / .cpp / .cc.

Compile with g++ command:

$ g++ —Wall —g —std=c++11 —o firstprog firstprog.cc # compile, create "a.out"
$.Airstprog # execute program

-Wkind generate warning message for this “kind” of situation.

o -Wall print ALL warning messages.

o -Werror make warnings into errors so program does not compile.
-g add symbol-table information to object file for debugging
-std=c++11 allow new CH11 extensions (requires gcc-4.8.0 or greater)
-0 file containing the executable (a.out default)

create shell alias for g++ to use options g++ —Wall —g —std=c++11

Comment

Comment may appear where whitespace (space, tab, newline) is allowed.

| Java/C/CH \
1| /... %
// remainder of line

/+ ..+ comment cannot be nested:
Y 7Y

end comment treated as statements

Be extremely careful in using this comment to elide/comment-out code. (page 99 presents
another way to comment-out code.)

Declaration

A declaration introduces names or redeclares names from previous declarations.

42 CHAPTER 2. C++

2.5.1 Basic Types

Java C/C+
boolean || bool (C <stdbool.h>)
char char / wchar_t ASCII / unicode character
byte char / wchar_t integral types
int int
float float real-floating types
double double
label type, implicit

e C/CH treat char / wechar_t as character and integral type.

e Java types short and long are created using type qualifiers (see Section 2.5.3).

2.5.2 Variable Declaration

e C/C#+ declaration: type followed by list of identifiers, except label with an implicit type
(same in Java).

| Java/C/CH |
char a, b, c, d;
int i, j, k;
double x, vy, z;
i :

¢ Declarations may have an initializing assignment:

inti=3; inti=3,j=i, k=1(j);
intj=4+i
intk =f(j);

e C restricts initializer elements to be constant for global declarations.

2.5.3 Type Qualifier

Other integral types are composed with type qualifiers modifying integral types char and int.

C/C+ provide size (short, long) and signed-ness (signed = positive/negative, unsigned
= positive only) qualifiers.

int provides relative machine-specific types: usually int > 4 bytes for 32/64-bit computer,
long > int, long long > long.

#include <climits> specifies names for lower/upper bounds of a type’s range of values for a
machine, e.g., a 32/64-bit computer:

2.5. DECLARATION 43

‘ integral types ‘ range (lower/upper bound name)
char (signed char) SCHAR_MIN to SCHAR_MAX, e.g., -128 to 127
unsigned char 0 to UCHAR_MAX, e.g. 0 to 255
short (signed short int) SHRT_MIN to SHRT_MAX, e.g., -32768 to 32767
unsigned short (unsigned short int) 0 to USHRT_MAX, e.g., 0 to 65535
int (signed int) INT_MIN to INT_MAX, e.g.,-2147483648 to 2147483647
unsigned int 0 to UINT_MAX, e.g., 0 to 4294967295
long (signed long int) LONG_MIN to LONG_MAX,
e.g., —2147483648 to 2147483647
unsigned long (unsigned long int) 0 to ULONG_MAX, e.g. 0 to 4294967295
long long (signed long long int) LLONG_MIN to LLONG_MAX,
e.g.,~9223372036854775808 to 9223372036854775807
unsigned long long (unsigned long long int) | 0 to ULLONG_MAX, e.g., 0 to 18446744073709551615

e C/C+ provide two basic real-floating types float and double, and one real-floating type
generated with type qualifier.

e #include <cfloat> specifies names for precision and magnitude of real-floating values.

real-float types | range (precision, magnitude)

float FLT_DIG precision, FLT_MIN_10_EXP to FLT_MAX_10_EXP,
e.g,. 6+ digits over range 10738 to 108, IEEE (4 bytes)
double DBL_DIG precision, DBL_MIN_10_EXP to DBL_MAX_10_EXP,

e.g., 15+ digits over range 1073 to 1038, IEEE (8 bytes)
long double LDBL_DIG precision, LDBL_MIN_10_EXP to LDBL_MAX_10_EXP,
e.g., 18-33+ digits over range 10~4°32 to 10*932, IEEE (12-16 bytes)

float : +£1.17549435e-38 to +£3.40282347e+38
double : £2.2250738585072014e-308 to £1.7976931348623157e+308
long double : £3.36210314311209350626e-4932 to +1.18973149535723176502e+4932

2.5.4 Literals
e Variables contain values; values have constant (C) or literal (C+) meaning.

3=7; // disallowed

e C/C+ and Java share almost all the same literals for the basic types.

type literals

boolean | false, true
character | "a’, 'b’, "¢’
string | "abc","a b c"
integral | decimal : 123, -456, 123456789
octal, prefix 0 : 0144, -045, 04576132
hexadecimal, prefix 0X / Ox : Oxfe, -0X1f, Oxe89abc3d
real-floating | .1, 1., -1., 0.52, -7.3E3, -6.6e-2, E/e exponent

44 CHAPTER 2. C++

e Use the right literal for a variable’s type:

bool b = true; // not 1
inti =1; // not 1.0
double d = 1.0 // not 1
charc ='a’; // not 97
const char «cs = "a"; // not'a’

e Literal are undesignated, compiler chooses smallest type, or designated, programmer chooses
type with suffixes: L/l = long, LL/Il = long long, U/u = unsigned, and F/f = float.

-3 // undesignated, int

-3L // designated, long int
1000000000000000000 // undesignated, long long int (why?)
1000000000000000000LL // designated, long long int

4U // designated, unsigned int
100000000000000000ULL // designated, unsigned long long int
3.5E3 // undesignated, double

3.5E3F // designated, float

¢ Juxtaposed string literals are concatenated.

"John" // divide literal for readability
"Doe"; // even over multiple lines
"JohnDoe";

e Every string literal is implicitly terminated with a character ' \0’ (sentinel).

o "abc" is 4 characters: 'a’, 'b’, "c’,and ' \0’, which occupies 4 bytes.
o String cannot contain a character with the value " \0".
o Computing string length requires O(N) search for " \0".

e Escape sequence provides quoting of special characters in a character/string literal using a
backslash, \.

"\ backslash

T\ single quote

T double quote

"\t’, ’\n’ | (special names) tab, newline, ...
"\O’ zero, string termination character

e C/C+ provide user literals (write-once/read-only) with type qualifier const (Java final).

| Java I C/C+ |
final char Initial = 'D’; const char Initial = 'D’;
final short int Size = 3, SupSize; || const short int Size = 3, SupSize = Size + 7;
SupSize = Size + 7; disallowed
final double Pl = 3.14159; const double Pl = 3.14159;

2.5. DECLARATION 45
e C/CH+ const variable must be assigned a value at declaration (see also Section 2.22.6, p. 113);
the value can be the result of an expression.

e A constant variable can (only) appear in contexts where a literal can appear.

Size = 7; // disallowed

¢ Good practise is to name literals so all usages can be changed via its initialization value.
(see Section 2.12.1, p. 75)

const short int Mon=0, Tue=1, Wed=2, Thu=3, Fri=4, Sat=5, Sun=6;

2.5.5 C#+ String

string (#include <string>) is a sequence of characters with powerful operations performing
actions on groups of characters.

C provided strings by an array of char, string literals, and library facilities.

char s[10]; // string of at most 10 characters

Because C-string variable is fixed-sized array:

o management of variable-sized strings is the programmer’s responsibility,

o requiring complex storage management.

C+ solves these problems by providing a “string” type:

o maintaining string length versus sentinel character ' \0",

o managing storage for variable-sized string.

| Java String | Cchar [] | C# string
strcpy, strncpy | =
+, concat strcat, strncat
equal, compareTo stremp, strncmp | ==, l=, <, <=, >, >=
length strlen length
charAt [] []
substring substr
replace replace
indexOf, lastindexOf || strstr find, rfind
strcspn find_first_of, find_last_of
strspn find_first_not_of, find_last_not_of
c_str

e find routines return value string::npos of type string::size_type, if unsuccessful search.

CHAPTER 2. C++

e c_str converts a string to a char » pointer (' \0’ terminated).

string a, b, c; // declare string variables

cin >> ¢; // read white-space delimited sequence of characters
cout << ¢ << endl; // print string

a = "abc"; // set value, a is “abc”

b=a; // copy value, b is “abc”

c=a+b; // concatenate strings, ¢ is “abcabc”

if (a<=Db) // compare strings, lexigraphical ordering
string::size_type | = c.length(); // string length, | is 6

char ch = c[4]; // subscript, ch is ' b", zero origin

cl4] = "x'; // subscript, ¢ is “abcaxc”, must be character

string d = c.substr(2,3); // extract starting at position 2 (zero origin) for length 3, d is “cax”
c.replace(2,1,d); // replace starting at position 2 for length 1 and insert d, c is “abcaxaxc”
string::size_type p = c.find("ax"); // search for 1st occurrence of string “ax”, p is 3

p = c.rfind("ax"); // search for last occurrence of string “ax”, p is 5

p = c.find_first_of("aeiou"); / search for first vowel, p is 0

p = c.find_first_not_of("aeiou"); // search for first consonant (not vowel), p is 1

p = c.find_last_of("aeiou"); // search for last vowel, p is 5

p = c.find_last_not_of("aeiou"); / search for last consonant (not vowel), p is 7

¢ Note different call syntax c.substr(2, 3) versus substr(¢, 2, 3) (see Section 2.22, p. 99).

e Count and print words in string line containing words composed of lower/upper case letters.

unsigned int count = 0;
string line, alpha = "abcdefghijklmnopgrstuvwxyz"
"ABCDEFGHIJKLMNOPQRSTUVWXYZ";
... // line Is initialized with text
line += "\n"; // add newline as sentinel
for (;;) { // scan words off line
// find position of 1st alphabetic character
string::size_type posn = line.find_first_of(alpha);
if (posn == string::npos) break; // any characters left ?
line = line.substr(posn); / remove leading whitespace
// find position of 1st non-alphabetic character
posn = line.find_first_not_of(alpha);
// extract word from start of line
cout << line.substr(0, posn) << endl; // print word
count += 1; // count words
line = line.substr(posn); / delete word from line
} // for

2.6. INPUT/OUTPUT 47

0123456789 ...

line Tlhle| |Maluli|clk]’ b|r|olw|n\ri find first

Tlhle| [gluli|c|k[’ blr|olw|n\n substr
1agluli|clk]’ b|r|o|w[n\1 find first not

qluli|clk b|r|o(wn\d substr
i b|r|o|w[n\q find first
b|r|own\q substr
E find first not
npos

e Contrast C and C+ style strings (note, management of string storage):

#include <string.h> // C string routines
#include <string> // C++ string routines
using namespace std;

int main() {

// C++ string

const string X = "abc", Y = "def", Z = "ghi";
string S = X + Y + Z;

// C string

const char »x = "abc", «y = "def", »z = "ghi";

char s[strlen(x)+strlen(y)+strlen(z)+1]; // pre-compute size
strepy('s, ""); // initialize to null string

strcat(strcat(strcat(s, x), ¥y), 2);

}

Why “+1” for dimension of s?

¢ Good practice is NOT to iterate through the characters of a string variable!

2.6 Input/Output

e Input/Output (I/O) is divided into two kinds:

1. Formatted I/O transfers data with implicit conversion of internal values to/from human-
readable form.

2. Unformatted I/O transfers data without conversion, e.g., internal integer and real-
floating values.

48

2.6.1 Formatted I/0

CHAPTER 2. C++

‘ Java

C

CH |

import java.io.;
import java.util.Scanner;

#include <stdio.h>

#include <iostream>

File, Scanner, PrintStream

FILE

ifstream, ofstream |

Scanner in = new

Scanner(new File("f"))

in = fopen("£", "r");

ifstream in("£");

PrintStream out = new
PrintStream("g")

out = fOpen("g"’ "o)

ofstream out("g")

in.close() close(in) scope ends, in.close()
out.close() close(out) scope ends, out.close()
nextint() fscanf(in, "$d", &i) in>>T
nextFloat() fscanf(in, "$£", &f)
nextByte() fscanf(in, "%c", &c)
next() fscanf(in, "$s", &s)
hasNext() feof(in) in.fail()
hasNextT() fscanf return value in.fail()
in.clear()

skip("regexp") fscanf(in, "%« [regexp]") | in.ignore(n, c)
out.print(String) fprintf(out, "%d", i) out << T

fprintf(out, "$£", f)

fprintf(out, "%c", ¢)

fprintf(out, "%s", s)

Formatted I/O occurs to/from a stream file, and values are conversed based on the type of
variables and format codes.

C+ has three implicit stream files: cin, cout and cerr, which are implicitly declared and
opened (Java has in, out and err).

C has stdin, stdout and stderr, which are implicitly declared and opened.

#include <iostream> imports all necessary declarations to access cin, cout and cerr.
cin reads input from the keyboard (unless redirected by shell).

cout/cerr write to the terminal screen (unless redirected by shell).

Error and debugging messages should always be written to cerr:

o normally not redirected by the shell,

o unbuffered so output appears immediately.

Stream files other than 3 implicit ones require declaring each file object.

2.6. INPUT/OUTPUT 49

#include <fstream> // required for stream-file declarations
ifstream infile("myinfile"); // input file
ofstream outfile("myoutfile"); // output file

e File types, ifstream/ofstream, indicate whether the file can be read or written.
e File-name type, "myinfile"/"myoutfile", is char * (not string, see page 53).
e Declaration opens an operating-system file making it accessible through the variable name:

o infile reads from file myinfile

o oulffile writes to file myoutfile
where both files are located in the directory where the program is run.

e Check for successful opening of a file using the stream member fail, e.g., infile.fail(), which
returns true if the open failed and false otherwise.

if (infile.fail()) ... // open failed, print message and exit
if (outfile.fail()) ... // open failed, print message and exit

e C+ I/O library overloads (see Section 2.19, p. 93) the bit-shift operators << and >> to per-
form I/0.

e C I/O library uses fscanf(outfile,...) and fprintf(infile,...), which have short forms scanf(...)
and printf(...) for stdin and stdout.

e Both I/O libraries can cascade multiple I/O operations, i.e., input or output multiple values
in a single expression.

2.6.1.1 Formats

e Format of input/output values is controlled via manipulators defined in #include <iomanip>.

oct (%0) integral values in octal

dec (%d) integral values in decimal

hex (%Xx) integral values in hexadecimal

left / right (default) values with padding after / before values

boolalpha / noboolalpha (default) | bool values as false/true instead of 0/1
showbase / noshowbase (default) | values with / without prefix O for octal & 0x for hex
showpoint / noshowpoint (default) | print decimal point if no fraction

fixed (default) / scientific float-point values without / with exponent

seffill(ch”) padding character before/after value (default blank)
setw(W) (%Wd) NEXT VALUE ONLY in minimum of W columns
setprecision(P) (%.Pf) fraction of float-point values in maximum of P columns
endl (\n) flush output buffer and start new line (output only)

skipws (default) / noskipws skip whitespace characters (input only)

50 CHAPTER 2. C++

e Manipulators are not variables for input/output, but control I/O formatting for all liter-
als/variables after it, continuing to the next I/O expression for a specific stream file.

¢ Except manipulator setw, which only applies to the next value in the I/O expression.
¢ endl is not the same as ' \n’, as ' \n’ does not flush buffered data.

e For input, skipws/noskipws toggle between ignoring whitespace between input tokens and
reading whitespace (i.e., tokenize versus raw input).

2.6.1.2 Output

e Java output style converts values to strings, concatenates strings, and prints final long string:

System.out.printin(i + " " +j); // build a string and print it

C/C+ output style has a list of formats and values, and output operation generates strings:

cout << i<< " " << j << end, // print each string as formed

No implicit conversion from the basic types to string in C+ (but one can be constructed).

While it is possible to use the Java string-concatenation style in C+, it is incorrect style.

e Use manipulators to generate specific output formats:

#include <iostream> // cin, cout, cerr
#include <iomanip> // manipulators
using namespace std;
inti =7; double r = 2.5; char c = ' z’; const char s = "abc";
cout << "i:" << setw(2) << i
<< " r:" << fixed << setw(7) << setprecision(2) << r
<< "c:i"<<Cc<< " s:" << s << endl;
#include <stdio.h>
fprintf(stdout, "1:%2d r:%7.2f c:%c s:%s\n", i, r, ¢, s);

i: 7r: 250 c:z s:abc

2.6.1.3 Input

e C+ formatted input has implicit character conversion for all basic types and is extensible to
user-defined types (Java/C use an explicit Scanner/fscanf).

2.6. INPUT/OUTPUT 51

| Java | C | CH+
import java.io.»; #include <stdio.h> #include <fstream>
import java.util.Scanner; FILE in = fopen("f", "x"); |ifstream in("£");

Scanner in =
new Scanner(new File("f")); || FILE *out = fopen("g", "w");
PrintStream out =

ofstream out("g");

new PrintStream("g"); int i, j; int i, ;
int i, j; for (;;) { for (;;) {
while (in.hasNext()) { fscanf(in, "$d%d", &i, &j); in>>i>>j;
i = in.nextInt(); j = in.nextInt(); || if (feof(in)) break; if (in.fail()) break;
out.printin("i:"+i+" j: "+); fprintf(out,"1:%d 7:%d\n",i,j);| out << "i:" <<
} <<" j: "<<j<<endl;
in.close(); close(in);
out.close(); close(out); // infout closed implicitly

e Numeric input values are C/C+ undesignated literals : 3, 3.5e-1, etc., separated by whites-
pace.

e Character/string input values are characters separated by whitespace.
e Type of operand indicates the kind of value expected in the stream.
o e.g., an integer operand means an integer value is expected.

e Input starts reading where the last input left off, and scans lines to obtain necessary number
of values.

o Hence, placement of input values on lines of a file is often arbitrary.
e C/C+ must attempt to read before end-of-file is set and can be tested.
e End of file is the detection of the physical end of a file; there is no end-of-file character.

e In shell, typing <ctrl>-d (C-d), i.e., press <ctrl> and d keys simultaneously, causes shell to
close current input file marking its physical end.

e In C+, end of file can be explicitly detected in two ways:

o stream member eof returns true if the end of file is reached and false otherwise.

o stream member fail returns true for invalid values OR no value if end of file is reached,
and false otherwise.

e Safer to check fail and then check eof.

for (55){
cin >> i;
if (cin.eof()) break; // should use “fail()”
cout << i << endl;

52 CHAPTER 2. C++

e If "abc" is entered (invalid integer value), fail becomes true but eof is false.
¢ Generates infinite loop as invalid data is not skipped for subsequent reads.

e Stream is implicitly converted to bool in an integer context: if ! fail(), true; otherwise false.

while (cin >> i) ... // read and check cin to = 0

o results in side-effects in the expression (changing variable i)
o does not allows analysis of the input stream (cin) without code duplication

while (cin >> i) { for (;;) {
cout << cin.good() << endl; cin >> i;
cout << cin.good() << endl;
if (cin.fail()) break;
}

cout << cin.good() << endl; }

e After unsuccessful read, call clear() to reset fail() before next read.

#include <iostream>

#include <limits> // numeric_limits
using namespace std;
int main() {
int n;
cout << showbase; // prefix hex with 0x
cin >> hex; // input hex value
for (5) {
cout << "Enter hexadecimal number: ";
cin >> n;
if (cin.fail()) { // problem ?
if (cin.eof()) break; // eof ?
cerr << "Invalid hexadecimal number" << endl;
cin.clear(); // reset stream failure
cin.ignore(numeric_limits<int>::max(),’ \n’); // skip until newline
} else {

cout << hex << "hex:" << n << dec << " dec:" << n << endl;

}
}

cout << endl;

e ignore skips n characters, e.g., cin.ignore(5) or until a specified character.

e getline(stream, string, char) reads strings with white spaces allowing different delimiting
characters (no buffer overflow):

getline(cin, ¢, ' '); // read characters until ' ' => cin >> ¢
getline(cin, ¢, '@’); // read characters until ' @’
getline(cin, ¢, "\n’); // read characters until newline (default)

2.6. INPUT/OUTPUT 53

¢ Read in file-names, which may contain spaces, and process each file:

#include <fstream>

using namespace std;

int main() {
ifstream fileNames("fileNames"); // open list of file names
string fileName;

for (;;){ // process each file
getling(fleNames, fileName); / name may contain spaces
if (fileNames.fail()) break; // handle no terminating newline
ifstream file(fileName); // open each file

// read and process file

In C, routine feof returns true when eof is reached and fscanf returns EOF.

e Parameters in C are always passed by value (see Section 2.18.1, p. 91), so arguments to
fscanf must be preceded with & (except arrays) so they can be changed.

e stringstream allows I/O from a string.

Tokenize whitespace separated word.

#include <sstream>

string tok, line = " The \"quick\" brown\n";
stringstream ss;
ss.str(line); // Initialize input stream
while (ss >> tok) { // read each word

cout << tok << endl; // print word
}
ss.clear(); // reset
ss.str("17"); // initialize input stream
int i;
SS >> i; // convert characters to number
cout << i << endl; // print number

e [s this as powerful as tokenizing words composed of lower/upper case letters?

54 CHAPTER 2. C++

2.7 Expression

| Java | C/C+ | priority
postfix|., [], call X, ., —> [], call, cast |high
prefix|+, -, !, ~, cast, +, -, I, ~, &, =, cast,
(unary)|new new, delete, sizeof
binary|*, /, % * [, %
+, - +, -
bit shift|<<, >>, >>> <<, >>
relational |<, <=, >, >=, instanceof <, <=, >, >=
equality |==, = ==, =
bitwise|& and &
A exclusive-or A
| or |
logical|&& short-circuit &&
| I
conditional | ?: ?:
assignment|=, +=, —=, *=, /=, %= =, +=, —=, *=, [=, Y%=
<<=, >>=, >>>=, &=, M=, |=(|<<=, >>=, &=, M=, |=
comma , low

e Subexpressions and argument evaluation is unspecified (Java left to right)

(i+j)«~(k+j); // either + done first

(i=j)+ (=i); // either = done first

g(i)+f(k) +h(j);, /g, f orhcalled in any order

f(p++, p++, p++); // arguments evaluated in any order

¢ Beware of overflow.

unsigned int a = 4294967295, b = 4294967295, ¢ = 4294967295;
(a+b)/c; // => 0 as a+b overflows leaving zero
a/c+b/c /=2

Perform divides before multiplies (if possible) to keep numbers small.
e C+ relational/equality return false/true; C return 0/1.

e Referencing (address-of), &, and dereference, =, operators (see Section 2.12.2, p. 76) do not
exist in Java because access to storage is restricted.

e General assignment operators only evaluate left-hand side (lhs) once:

v (3)]
v[1(3)]

=1; // only calls f once
=v[f@3)] + 1; // calls f twice

+

¢ Bit-shift operators, << (left), and >> (right) shift bits in integral variables left and right.

o left shift is multiplying by 2, modulus variable’s size;

o right shift is dividing by 2 if unsigned or positive (like Java >>>);

2.7. EXPRESSION 55

o undefined if right operand is negative or > to length of left operand.

int x, y, z;

X=y=2z=1;

cout << X << 1) <</ " << (Y << 2) <<’ " << (2 << 3) << end|;
X=Yy=2z=16;

cout << (X >> 1) <<’ " << (y>>2) <<’ ' << (z >> 3) << end|;
248

842

Why are parenthesis necessary?

2.7.1 Conversion

e Conversion transforms a value to another type by changing the value to the new type’s
representation (see Section 2.22.3.2, p. 104).

¢ Conversions occur implicitly by compiler or explicitly by programmer using cast operator
or C+ static_cast operator.

int i; double d;

d=i // implicit (compiler)

d= (double) i; // explicit with cast (programmer)
d = static_ cast<doub|e>(i); // C++

e Two kinds of conversions:

o widening/promotion conversion, no information is lost:

bool — char — short int — long int — double
true 1 1 1 1.000000000000000

where false — 0; true — 1

o nmarrowing conversion, information can be lost:

double — long int — short int — char — bool
77777.77777777777 77777 12241 209 true

where 0 — false; non-zero — true
¢ C/C#+ have implicit widening and narrowing conversions (Java only implicit widening).

e Beware of implicit narrowing conversions:

int i; double d;
i = d =35, /d->35
d=i=23.5; /d-> 3.0 truncation

e Good practice is to perform narrowing conversions explicitly with cast as documentation.

int i; double d1 = 7.2, d2 = 3.5;

i = (int) di; // explicit narrowing conversion

i = (int) d1 / (int) d2; // explicit narrowing conversions for integer division
i = static_cast<int>(d1 / d2); // alternative technique after integer division

56 CHAPTER 2. C++

e C+ supports casting among user defined types (see Section 2.22, p. 99).

2.7.2 Coercion

e Coercion reinterprets a value to another type but the result is may not be meaningful in the
new type’s representation.

e Some narrowing conversions are considered coercions.

o E.g., when a value is truncated or converting non-zero to true, the result is nonsense in
the new type’s representation.

e Also, having type char represent ASCII characters and integral (byte) values allows:
charch = 'z’ - "a’; // character arithmetic!

which is often unreasonable as it can generate an invalid character.

¢ But the most common coercion is through pointers (see Section 2.12.2, p. 76):
int i, «ip = &i; // ip is a pointer to an integer
double d, *dp = &d; // dp is a pointer to a double
dp = (double *) ip; // lie, say dp points at double but really an integer
dp = reinterpret_cast<double *>(ip);

Using explicit cast, programmer has lied to compiler about type of ip.

e Signed/unsigned coercion.
unsigned int size;
cin >> size; // negatives become positives

if (size < 0) cout << "invalid range" << endl;
int arr[size];

e size is unsigned because an array cannot have negative size.

e cin does not check for negative values for unsigned = -2 read as 4294967294.

e Use safe coercion for checking range of size.

if ((int)size < 0) cout << "invalid range" << endl;
e Must be consistent with types.

for (inti=0;i<size;i+=1){}

test.cc:12:22: warning: comparison between signed and unsigned integer expressions

¢ Good practice is to limit narrowing conversions and NEVER lie about a variable’s type.

2.8. UNFORMATTED I/O 57

2.8 Unformatted 1/0

e Expensive to convert from internal (computer) to external (human) forms (bits < characters).

e When data does not have to be seen by a human, use efficient unformatted I/O so no conver-
sions.

e Uses same mechanisms as formatted I/O to connect variable to file (open/close).

e read and write routines directly transfer bytes from/to a file, where each takes a pointer to
the data and number of bytes of data.

read(char =data, streamsize num);
write(char data, streamsize num);

e Read/write of types other than characters requires a coercion cast (see Section 2.7.2) or CH
reinterpret_cast.

#include <iostream>
#include <fstream>
using namespace std;
int main() {
const unsigned int size = 10;
int arrsize];
{ // read array
ifstream infile("myfile"); // open input file “myfile”
infile.read(reinterpret_cast<char «>(&arr), size » sizeof(arr[0])); // coercion
} // close file
... // modify array
{ // print array
ofstream oulffile("myfile"); // open output file “myfile”
outfile.write((char *)&arr, size ~ sizeof(arr[0])); // coercion
} // close file

}

¢ Need special command to view unformatted file as printable characters (not shell cat).

e E.g., view internal values as byte sequence for 32-bit int values (little endian, no newlines).
$ od -t ul myfile

0000000 0 0 0 O1T 0 OO 200O0300O0O0
0000020 4 0 0 0O 5 0 006 0007 000O0
0000040 8 0 0 0 9 0 O O

e Coercion is unnecessary if buffer type was void ».

2.9 Math Operations

e #include <cmath> provides overloaded real-float mathematical-routines for types float, double
and long double:

CHAPTER 2. C++

operation | routine operation routine
|x| abs(x) xmody | fmod(x,y)
arccosx | acos(x) Inx log(x)
arcsinx asin(x) logx log10(x)
arctanx atan(x) x pow(X, Yy)
[x] ceil(x) sinx sin(x)
cosx cos(x) sinhx sinh(x)
coshx cosh(x) VX sqrt(x)

e* exp(x) tanx tan(x)

| x| floor(x) tanhx tanh(x)

and math constants:

M_E 2.7182818284590452354 // e
M_LOG2E 1.4426950408889634074 // log_2 e
M_LOG10E 0.43429448190325182765 //log_10 e
M_LN2 0.69314718055994530942 // log_e 2
M_LN10 2.30258509299404568402 // log_e 10
M_P 3.14159265358979323846 // pi
M_P|_2 1.57079632679489661923 // pi/2
M_PI_4 0.78539816339744830962 // pi/4
M_1_PI 0.31830988618379067154 // 1/pi
M_2_PI 0.63661977236758134308 // 2/pi
M_2_SQRTPI 1.12837916709551257390 // 2/sqrt(pi)
M_SQRT2 1.41421356237309504880 // sqrt(2)
M_SQRT1_2 0.70710678118654752440 // 1/5grt(2)

e Some systems also provide long double math constants.

* pow(x,y) () is computed using logarithms, 10¥1°2% (versus repeated multiplication), when
y is non-integral value =y > 0

pow(-2.0,3.0); —2°=-2x-2x-2=-8
pow(-2.0, 3.1); —2%! =10>1*/¢=20 — nan (not a number)

nan is generated because log —2 is undefined.

e Quadratic roots of ax? 4+ bx+c are r = (—b++/b> —4ac) /2a

#include <iostream>
#include <cmath>
using namespace std;

int main() {
double a = 3.5, b =2.1,c =-1.2;
double dis = sqrt(b b - 4.0 »a » ¢), dem = 2.0 = a;
cout << "rootl: " << (-b + dis) / dem << endl;
cout << "root2: " << (-b - dis) / dem << endl;

2.10. CONTROL STRUCTURES

2.10 Control Structures

59

| Java | C/C+
block | { intermixed decls/stmts } { intermixed decls/stmts }
selection | jf (bool-expr1) stmti1 if (bool-expr1) stmti1
else if (bool-expr2) stmt2 else if (bool-expr2) stmt2
é.l.se stmtN é.l.se stmtN
switch (integral-expr) { switch (integral-expr) {
case c1: stmis1; break; case cl1: stmis1; break;
;:-a-se cN: stmisN; break; ;:-a-se cN: stmtsN; break;
default: simts0; default: simts0;
} }
looping | while (bool-expr) stmt while (bool-expr) stmt
do stmt while (bool-expr) ; do stmt while (bool-expr) ;
for (init-expr;bool-expr;incr-expr) stmt || for (init-expr;bool-expr;incr-expr) stmt
transfer | break [/abel | break
continue [/abel | continue
goto /abel
return [expr] return [expr]
throw [expr] throw [expr]
label | label : stmt label : stmt
2.10.1 Block

e Compound statement serves two purposes:

o bracket several statements into a single statement

o introduce local declarations.

¢ Good practice is use a block versus single statement to allow adding statements.

no block block
if (x>y) if (x>y){
X =0; X =0;
}

e Does the shell have this problem?

e Nested block variables are allocated last-in first-out (LIFO) from the stack memory area.

{ // block1 stack
// variables free SRS
{ // block2 code | static heap [+ == 8| 8| *
// variables memory | 5| 5| °

} } low address high address

60 CHAPTER 2. C++

e Nested block declarations reduces declaration clutter at start of block.

int i, j, k; / global int i;
... //usei j, k ... //usei
{ intj; / local
.../ useli j
{ intk; / local
...//usei j, k

However, can also make locating declarations more difficult.

¢ Variable names can be reused in different blocks, i.e., possibly shadow (hiding) prior vari-
ables.

inti =1; ... /7 first i

{ intk=ii=2j=1;.../ k=firsti, second i overrides first
{ inti=3;.../ third i (overrides second)

2.10.2 Selection
e C/C+ selection statements are if and switch (same as Java).
¢ For nested if statements, else matches closest if, which results in the dangling else problem.

e E.g., reward WIDGET salesperson who sold $10,000 or more worth of WIDGETS and dock
pay of those who sold less than $5,000.

‘ Dangling Else ‘ Fix Using Null Else ‘ Fix Using Block
if (sales < 10000) if (sales < 10000) if (sales < 10000) {
if (sales < 5000) if (sales < 5000) if (sales < 5000)
income -= penalty; income -= penalty; income -= penalty;
else ; // null statement
else // incorrect match!!! else } else
income += bonus; income += bonus; income += bonus;

¢ Unnecessary equality for boolean as value is already true or false.

bool b;
if (b == true) if (b)

e Redundant if statement.

if (a < b) return true; return a < b;
else return false;

e Conversion causes problems (use -Wall).

if (-0.5<=x<=0.5)... // looks right and compiles
if (((-05<=x)<=0.5)).../ what does this do?

2.10. CONTROL STRUCTURES 61

e Assign in expressions causes problems because conditional expression is tested for # 0, i.e.,
expr = expr = 0 (use -Wall).

if (x =y).../ what does this do?

Possible in Java for one type?

¢ A switch statement selectively executes one of N alternatives based on matching an integral
value with a series of case clauses (see Section 2.11, p. 71).

switch (day) { // integral expression
// STATEMENTS HERE NOT EXECUTED!!!
case Mon: case Tue: case Wed: case Thu: // case value list
cout << "PROGRAM" << endl;
break; // exit switch
case Fri:
wallet += pay;
/+ FALL THROUGH +
case Sat:
cout << "PARTY" << endl;
wallet —= party;

break; // exit switch
case Sun:

cout << "REST" << endl;

break; // exit switch
default: // optional

cerr << "ERROR: bad day" << endl;
exit(EXIT_FAILURE); / TERMINATE PROGRAM

}

¢ Only one label for each case clause but a list of case clauses is allowed.

¢ Once case label matches, the clauses statements are executed, and control continues to the
next statement. (comment each fall through)

¢ [f no case clause is matched and there is a default clause, its statements are executed, and
control continues to the next statement.

e Unless there is a break statement to prematurely exit the switch statement.
e It is a common error to forget the break in a case clause.
e Otherwise, the switch statement does nothing.

e case label does not define a block:

switch (i) {
case 3: { // start new block
intj=1i // can now declare new variable

62

CHAPTER 2. C++

2.10.3 Multi-Exit Loop (Review)

Multi-exit loop (or mid-test loop) has one or more exit locations within the loop body.

While-loop has 1 exit located at the top (Ada):
while i < 10 { loop -~ infinite loop
exit when i >= 10; —- loop exit
... . 1 reverse condition
} end loop

Repeat-loop has 1 exit located at the bottom:

do { loop -— infinite loop
' exif 'when i >= 10; —— loop exit
} while (i <10) end loop 1 reverse condition

Exit should not be restricted to only top and bottom, i.e., can appear in the loop body:
loop
exit' When i >=10;
end -I-o-op
Loop exit has ability to change kind of loop solely by moving the exit line.

In general, your coding style should allow changes and insertion of new code with minimal
changes to existing code.

Advantage: eliminate priming (duplicated) code necessary with while:

read(input, d); loop

while ! eof(input) do read(input, d);

exit when eof(input);
read(input, d);

end while end loop

Good practice is to reduce or eliminate duplicate code. Why?

Loop exit is outdented or commented or both (Eye Candy) = easy to find without searching
entire loop body.

Same indentation rule as for the else of if-then-else (outdent else):

if ... then if ... then
XXX XXX
else else // outdent to see else clause
XXX XXX

end if end if

A multi-exit loop can be written in C/C+- in the following ways:

2.10. CONTROL STRUCTURES 63

for (;;) { while (true) { do {
if (i >= 10) break; if (i >= 10) break; if (i >= 10) break;
} } } wHiié(true);

e The for version is more general as easily modified to have a loop index.

for (inti=0;i<10;i+=1) { / add/remove loop index

¢ Eliminate else on loop exits:

BAD GOOD BAD GOOD
for () { for (;;) { for (;) { for (;) {
St St St St
if (C1) { if (! C1) break; if (C1) { if (C1) break;
S2 S2 break;
} else { } else {
break; S2 S2
} }
S3 S3 S3 S3
} } } }

S2 is logically part of loop body not part of an if.

e Easily allow multiple exit conditions:

bool flag1l = false, flag2 = false;

for (5) { while (! flag1 & ! flag2) {
St S
if (i >=10) break; if (C1) flag1 = true;
} else {
S2 S2
if (j >= 10) break; if (C2) flag2 = true;
} else {
S3 S3
} }
}
}

¢ No flag variables necessary with loop exits.

o flag variable is used solely to affect control flow, i.e., does not contain data associated
with a computation.

e Case study: examine linear search such that:

o no invalid subscript for unsuccessful search

o index points at the location of the key for successful search.

¢ First approach: use only control-flow constructs if and while:

64

CHAPTER 2. C++

inti = —1; bool found = false;

while (i < size — 1 & ! found) { / both arguments are evaluated
i +=1;
found = key == list[i];

}

if (found) { ... // found

}else { ... // not found

}

Why must the program be written this way?

Second approach: allow short-circuit control structures.

for (i =0;i < size && key = list[i]; i += 1);
// rewrite: if (i < size) if (key = list[i])

if (i<size){... // found

}else { ... // not found

}

How does && prevent subscript error?

Short-circuit && does not exist in all programming languages (Shell test), and requires
knowledge of Boolean algebra (false and anything is?).

Third approach: use multi-exit loop (especially if no && exits).

for (i=0;;i+=1){/or for(i=0;i<size;i+=1)
if (i >= size) break;
if (key == list[i]) break;

}

if (i<size){... // found
}else { ... // not found
}

When loop ends, it is known if the key is found or not found.

Why is it necessary to re-determine this fact after the loop?

Can it always be re-determined?

Extra test after loop can be eliminated by moving it into loop body.

for (i=0;;i+=1){

if (i>=size){aua= // not found
break;
} // exit
if (key == list[i]) { =« =« = // found
break;
} // exit
} // for

e E.g., an element is looked up in a list of items:

2.10. CONTROL STRUCTURES 65

o if it is not in the list, it is added to the end of the list,

o if it exists in the list, increment its associated list counter.

for (inti=0;;i+=1){
if (i>=size) {
list[size].count = 1; // add element to list
list[size].data = key;
size += 1; // needs check for array overflow
break;
} // exit
if (key == list[i].data) {
list[il.count += 1; // increment counter
break;
} // exit
} // for

e None of these approaches is best in all cases; select the approach that best fits the problem.

2.10.4 Static Multi-Level Exit

e Static multi-level exit transfers out of multiple control structures where exit points are
known at compile time.

LEX

¢ Transfer point marked with label variable declared by prefixing “identifier:” to a statement.

L1:i += 1; // associated with expression
L2:if (...) .. // associated with if statement
L3: ; // associated with empty statement

e Labels have routine scope (see Section 2.5.2, p. 42), i.e., cannot be overridden in local

blocks.
int L1; // identifier L1
L2: ; // identifier L2
double L1; // can override variable identifier
double L2; // cannot override label identifier
}
¢ One approach for multi-level exit is labelled exit (break/continue) (Java):
L1: {
... declarations ...
L2: switch (...) {
L3: for (...) {
... break L1; ... // exit block
... break L2; ... // exit switch
... break L3; ... / exit loop
}

66 CHAPTER 2. C++

Labelled break/continue transfer control out of the control structure with the corresponding
label, terminating any block that it passes through.

C/C+ do not have labelled break/continue = simulate with goto.

goto /abel allows arbitrary transfer of control within a routine.

goto transfers control backwards/forwards to labelled statement.

L1:;
'g'dto L1; // transfer backwards, up
goto L2; // transfer forward, down
L2: ;

e Transforming labelled break to goto:

... declarations ...
switch (...) {
for (...) {

... goto L1; ... / exit block
... goto L2; ... / exit switch
... goto L3; ... // exit loop

}
L3: ; / empty statement

e Why are labels at the end of control structures not as good as at start?
e Why is it good practice to associate a label with an empty statement?

e Multi-level exits are commonly used with nested loops:

2.10. CONTROL STRUCTURES

int i, j;
for (i=0;i<10;i+=1){

for (j=0;]<10;j+=1){

if () goto B2; // outdent

... // rest of loop
if (...) goto B1; // outdent

. // rest of loop

} B2: ;
. // rest of loop

} B1:

67

int i, j;
bool flag1 = false;
for (i=0;i<10 && ! flag1; i += 1) {
bool flag2 = false;
for (j=0;j< 10 &&
! flagl && ! flag2; j += 1) {

if (...) flag2 = true;
else {

.. // rest of loop

if (...) flag1l = true;

else {
... // rest of loop
} 7/ if
y //if
} // for
if (! flagl) {
... // rest of loop
} /if
} // for

¢ Indentation matches with control-structure terminated.

¢ Eliminate all flag variables with multi-level exit!

o Flag variables are the variable equivalent to a goto because they can be set/reset/tested

at arbitrary locations in a program.

e Simple case (exit 1 level) of multi-level exit is a multi-exit loop.

e Why is it good practice to label all exits?

e Normal and labelled break are a goto with restrictions:

o Cannot be used to create a loop (i.e., cause a backward branch); hence, all repeated

execution is clearly delineated by loop constructs.

o Cannot be used to branch into a control structure.
e Only use goto to perform static multi-level exit, e.g., simulate labelled break and continue.
e return statements can simulate multi-exit loop and multi-level exit.

e Multi-level exits appear infrequently, but are extremely concise and execution-time efficient.

2.10.5 Non-local Transfer

e Basic and advanced control structures allow virtually any control flow within a routine.

e Modularization: any contiguous code block can be factored into a (helper) routine and
called from anywhere in the program (modulo scoping rules).

http://proxy.lib.uwaterloo.ca/login?url=http://portal.acm.org/ft_gateway.cfm?id=362337&type=pdf&coll=ACM&dl=ACM&CFID=19394860&CFTOKEN=33044646

68 CHAPTER 2. C++

e Modularization fails when factoring exits, e.g., multi-level exits:

B1: for (i=0;i<10;i+=1){ void rtn(...) {

B2:for (j=0;j<10;j+=1) {

B2:for (j=0;j<10;j+=1) {
if (...) break B1;
if (...) break B1;

}
} }
Bi:for (i=0;i<10;i+=1){

Mo ...)
_—

e Modularized version fails to compile because labels only have routine scope (local vs
non-local scope).

e = among routines, control flow is controlled by call/return mechanism.

o given A calls B calls C, it is impossible to transfer directly from C back to A, terminat-
ing B in the transfer.

e Fundamentally, a routine can have multiple kinds of return.

o routine call returns normally, i.e., statement after the call

o exceptional returns, i.e., control transfers to statements not after the call
¢ Generalization of multi-exit loop and multi-level exit.

o control structures end with or without an exceptional transfer.
e Pattern addresses fact that:

o algorithms have multiple outcomes

o separating outcomes makes it easy to read and maintain a program
¢ Non-local transfer allows multiple forms of returns to any level.

o Normal return transfers to statement after the call, often implying completion of rou-
tine’s algorithm.

o Non-local return transfers to statement not after the call, indicating an ancillary com-
pletion (but not necessarily an error).

e Multiple returns often simulated with return code, i.e., value indicating kind of return.

2.10. CONTROL STRUCTURES

int retcode = f(...);
if (retcode > 0) {

// analyze return code

// normal return
} else if (recode == 0) {
// alternate return 1

} else {

// recode < 0

// alternate return 2

}

e Most library routines use a return code.

69

// routine with multiple returns

o e.g., printf() returns number of bytes transmitted or negative value for I/O error.

¢ Problems

o checking return code is optional = can be delayed or omitted, i.e., passive versus

active.

o does not handle returning multiple levels

o tight coupling

non-local transfer

local transfer/multi-level exit

local transfer/no multi-level exit

void f(int i, int |) {

for (...){
int k;
if (i<j8k>i)
goto L;

}
void g(inti) {

for (...){
int j;
S (R

. return;

int f(inti, int) {

for (...){
int k;

if (i <j&& k > i) return —1;
}

return 0;

}
int g(int i) {

for (...){
int j;
... if (f(i,j)== =1) return -1

}

return 0;

}
void h() {

for (...) {
int i;
if (g(i)==-1)gotoL;

}

... return;
L: ...

int f(int i, intj) {
bool flag = false;
for (! flag && ...) {
int k;

if (i<j8&8& k>i)flag = true;
else { ...}

}
if (!flag){...}
return flag ? -1 : 0;

}
int g(inti) {
bool flag = false;
for (! flag && ...) {
int j;
. if (f(i,j)== =1) flag = true
else { ...}

}
if (!flag){...}
return flag ? -1 : 0;
}
void h() {
bool flag = false;
for (! flag && ...) {
int i;
Lif (g(i) ==-1) flag = true;
else { ...}

}
if (!flag){...return;}
}

70

CHAPTER 2. C++

2.10.6 Dynamic Multi-Level Exit

Dynamic multi-level exit allows complex forms of transfers among routines (reverse direc-
tion to normal routine calls), called exception handling.

Exception handling is more than error handling.

An exceptional event is an event that is (usually) known to exist but which is ancillary to
an algorithm.

o an exceptional event usually occurs with low frequency

o e.g., division by zero, I/O failure, end of file, pop empty stack

Do not know statically where throw is caught.

struct L {}; // declare exception label
void f(...) { ... throw L(); ... } // dynamic transfer point
void g(...) { ... f(...) ... }
void h(...) {
try { ...9(...) .. // primary outcome
}ecatch(L) { ...} // H1, secondary outcome
try { ...9(...) .. // primary outcome
}ecatch(L) { ...} // H2, secondary outcome

}

throw can transfer to H1 or H2 depending on when or if throw is executed.
A routine implicitly can raise exceptions or have exceptions propagate through it.

A routine can explicitly specify if it does or does not have alternate outcomes, i.e., may or
may not propagate exceptions.

void f(...) noexcept(true) { /+ can NOT propagate exceptions + }
void g(...) noexcept(false) { /+ can propagate exceptions +'}

where hoexcept =- noexcept(true)
handler is inline (nested) routine responsible for handling raised exception.

o handler catches exception by matching with one or more exception types
o after catching, a handler executes like a normal subroutine
o handler can end, reraise the current exception, or raise a new exception
reraise terminates current handling and continues propagation of the caught exception.
o useful if a handler cannot deal with an exception but needs to propagate same exception
to handler further down the stack.
o provided by a throw statement without an exception type:

... throw; // no exception type

where a raise must be in progress.

2.11. COMMAND-LINE ARGUMENTS 71

e catch-any is a mechanism to match any exception.

try {
// may raise any exception

} cateh(= = =) { / handle all exceptions
// recover action (often clean up)
}

e Used as a general cleanup when a non-specific exception occurs and reraise to continue
exception.

e Contract between thrower and handler environments:
o thrower does change environment during computation; if computation fails, thrower

does not reset environment, and handler recovers from modified state (basic safety).

o thrower does not change environment during computation (copy values); if computa-
tion fails, thrower discards copies (rollback), and handler recovers from original state
(strong safety).

e Exception parameters allow passing information from the throw to handler.
¢ Inform a handler about details of the exception.

e Parameters are defined inside the exception:

struct E { int i, j; };
void f(...) { ... E a; a.i = 3; a.j = 5; throw(a); ... } / argument

void g_(...) (.. f(.) ..}
int main() {

try {
a(- - .);
} cateh(E p) { / parameter

// use p.i and p.j
}
}
¢ Exceptions make robust programming easier.

¢ Robustness results because exceptions are active versus passive (return codes), forcing pro-
grams to react immediately when an exceptional event occurs.

2.11 Command-line Arguments

e Starting routine main has two overloaded prototypes.

int main(); /#/ C: int main(void);
int main(int argc, char » argv[]); / parameter names may be different

e Second form is used to receive command-line arguments from the shell, where the command-
line string-tokens are transformed into C/CH+ parameters.

http://www.student.cs.uwaterloo.ca/~cs246/current/codeExamples/IO.cc

72 CHAPTER 2. C++

e argc is the number of string-tokens on the command line, including the command name.
e Java does not include command name, so number of tokens is one less.

e argv is an array of pointers to C character strings that make up token arguments.

% ./a.out —option infile.cc outfile.cc

0 1 2 3
argc =4 // number of command-line tokens
argv[0] = ./a.out\O // not included in Java
argv[1] = -option\0
argv[2] = infile.cc\O
argv[3] = outfile.cc\0
argvf4] =0 // mark end of variable length list

e Because shell only has string variables, a shell argument of "32" does not mean integer 32,
and may have to converted.

¢ Routine main usually begins by checking argc for command-line arguments.

Java | C/C+
class Prog {
public static void main(String[] args) { || int main(int argc, char *argv|[]) {
switch (args.length) { switch(argc) {
case 0: ... // no args case 1: ... // no args
break; break;
case 1: ... args[0] ... / 1 arg case 2: ... args[1] ... / 1 arg
break; break;
case ... // others args case ... // others args
break; break;
default: ... // usage message default: ... // usage message
System.exit(1); exit(EXIT_FAILURE);
} }

e Arguments are processed in the range argv[1] through argv[argc - 1].

e Process following arguments from shell command line for command:

cmd [size (> 0) [code (> 0) [input-file [output-file J]]]

o new/delete versus malloc/free,
o stringstream versus atoi, which does not indicate errors,

o no duplicate code.

http://www.student.cs.uwaterloo.ca/~cs246/current/codeExamples/IO.cc

2.11. COMMAND-LINE ARGUMENTS 73

#include <iostream>

#include <fstream>

#include <sstream>

#include <cstdlib> // exit

using namespace std; // direct access to std

bool convert(int &val, char ~buffer) { // convert C string to integer

stringstream ss(buffer); // connect stream and buffer
string temp;
ss >> dec >> val; // convert integer from buffer
return ! ss.fail() && // conversion successful ?
I'(ss >> temp); // characters after conversion all blank ?

} // convert
enum { sizeDeflt = 20, codeDeflt = 5 }; / global defaults

void usage(char *argv[]) {

cerr << "Usage: " << argv[0] << " [size (>=0 : " << sizeDeflt <<
") [code (>=0 : " << codeDeflt << ") [input-file [output-file]]] 1"
<< endl;
exit(EXIT_FAILURE); // TERMINATE PROGRAM
} // usage

int main(int argc, char ~argv[]) {
unsigned int size = sizeDeflt, code = codeDeflt; / default value

istream =infile = &cin; // default value
ostream =outfile = &cout; // default value
switch (argc) {

case 5:

outfile = new ofstream(argv[4]);
if (outfile->fail()) usage(argv); // open failed ?
// FALL THROUGH
case 4:
infile = new ifstream(argv[3]);
if (infile->fail()) usage(argv); / open failed ?
// FALL THROUGH
case 3:
if (! convert((int &)code, argv[2]) || (int)code < 0) usage(argv) ; // invalid ?
// FALL THROUGH
case 2:
if (! convert((int &)size, argv[1]) || (int)size < 0) usage(argv); / invalid ?
// FALL THROUGH

case 1: // all defaults
break;
default: // wrong number of options

usage(argv);

}
// program body

if (infile 1= &cin) delete infile; // close file, do not delete cin!
if (outfile |= &cout) delete outfile; // close file, do not delete cout!
} / main

e C+ I/O can be toggled to raise exceptions versus return codes.

74 CHAPTER 2. C++

infile—>exceptions(ios_base::failbit); // set cin/cout to use exceptions
outfile—>exceptions(ios_base::failbit);

try {
switch (argc) {
case 5:
try {
outfile = new ofstream(argv([4]); // open outfile file
outfile—>exceptions(ios_base::failbit); / set exceptions
} catch(ios_base::failure) {
throw ios_base::failure("could not open output file");
Y/ try
// FALL THROUGH
case 4:
try {
infile = new ifstream(argv[3]); // open input file
infile—>exceptions(ios_base::failbit); / set exceptions
} catch(ios_base::failure) {
throw ios_base::failure("could not open input file");
Y/ try
// FALL THROUGH
case 3:
if (! convert((int &)code, argv[2]) || (int)code < 0) { / invalid integer ?
throw ios_base::failure("invalid code");
Y/ if
default: // wrong number of options
throw ios_base::failure("wrong number of arguments");
} // switch

} catch(ios_base::failure err) {
cerr << err.what() << endl; // print message in exception
cerr << "Usage: " << argv[0] << ... // usage message

exit(EXIT_FAILURE); // TERMINATE
Y/ try
try {
for (;;) { // loop until end-of-file
x<infile >> ch; // raise ios_base:failure at EOF
} // for

} catch (ios_base::failure) {} // end of file

2.12 Type Constructor

e Type constructor declaration builds more complex type from basic types.

constructor | Java | C/C+ |
enumeration | enum Colour { R, G, B } enum Colour { R, G, B }
pointer any-type «p;
reference | (final) class-type r; any-type &r; (C+ only)
array | any-type v[] = new any-type[10]; any-type v[10];
any-type m[][] = new any-type[10][10]; || any-type m[10][10];
structure | class struct or class

2.12. TYPE CONSTRUCTOR 75

2.12.1 Enumeration

¢ Can create literals with const declaration (see page 44).
const short int Mon=0,Tue=1,Wed=2,Thu=3,Fri=4,Sat=5,Sun=6;

short int day = Sat;
days = 42; // assignment allowed

¢ Anenumeration is a type defining a set of named literals with only assignment, comparison,
and conversion to integer:

enum Days {Mon,Tue,Wed, Thu,Fri,Sat,Sun}; // type declaration, implicit numbering

Days day = Sat; // variable declaration, initialization

enum {Yes, No} vote = Yes; // anonymous type and variable declaration

enum Colour {R=0x1,G=0x2,B=0x4} colour; // type/variable declaration, explicit numbering
colour = B; // assignment

e Identifiers in an enumeration are called enumerators.

e First enumerator is implicitly numbered O; thereafter, each enumerator is implicitly num-
bered +1 the previous enumerator.

e Enumerators can be explicitly numbered.

enum {A=3,B,C=A-5D=3,E};/34-234
enum { Red = 'R’, Green = 'G’, Blue = "B’ }; /82, 71, 66

e Enumeration in G+ denotes a new type; enumeration in C is alias for int.

day = Sat; // enumerator must match enumeration
day = 42; // disallowed C++, allowed C
day = R; // disallowed C++, allowed C
day = colour; // disallowed C++, allowed C

e C/C+ enumerators must be unique in block.

enum CarColour { Red, Green, Blue, Black };
enum PhoneColour { Red, Orange, Yellow, Black };

Enumerators Red and Black conflict. (Java enumerators are always qualified).

¢ In C, “enum” must also be specified for a declaration:

enum Days day = Sat; // repeat “enum” on variable declaration

e Trick to count enumerators (if no explicit numbering):
enum Colour { Red, Green, Yellow, Blue, Black, No_Of_Colours };

No_Of_Colours is 5, which is the number of enumerators.

76 CHAPTER 2. C++

e [terating over enumerators:

for (Colour ¢ = Red; ¢ < No_Of_Colours; ¢ = (Colour)(c + 1)) {
cout << ¢ << endl;
}

Why is the cast, (Colour), necessary? Is it a conversion or coercion?

2.12.2 Pointer/Reference

e pointer/reference is a memory address.

int x, y;
int «p1 = &x, *p2 = &y, *p3 = 0; // or p3 is uninitialized

e Used to access the value stored in the memory location at pointer address.

e Can a pointer variable point to itself? p1 30 D
30

¢ Pointer to a string literal must be const. Why?

const char «cs = "abc";
¢ Pointer variable has two forms of assignment:

o pointer assignment

p1 = &X; // pointer assignment
p2 = pi; // pointer assignment

no dereferencing to access values.
o value assignment
*p2 = *p1; // value assignment, y = x

dereferencing to access values.
¢ Value used more often than pointer.
*p2 = ((p1 + *p2) = (+p2 - *p1)) / (xp1 - *p2);
e Less tedious and error prone to write:
p2 = ((p1 + p2) = (p2 - p1)) / (p1 - p2);
e C+ reference pointer provides extra implicit dereference to access target value:

int &1 = x, &2 = y;
r2=((rt +r2) «(r2 -r1))/ (r1 - r2);

¢ Hence, difference between plain and reference pointer is an extra implicit dereference.

[I3R2] [T3EA]

o lLe., do you want to write the “+”, or let the compiler write the “+”?

2.12.

TYPE CONSTRUCTOR 77

e However, implicit dereference generates problem for pointer assignment.

r2 = r1; // not pointer assignment

G+ solves the missing pointer assignment by making reference pointer a constant (const),
like a plain variable.

o Hence, a reference pointer cannot be assigned after its declaration, so pointer assign-
ment is impossible.

o As a constant, initialization must occur at declaration, but initializing expression has
implicit referencing because address is always required.

int &1 = &x; // error, should not have & before x

Java solves this problem by only using reference pointers, only having pointer assignment,
and using a different mechanism for value assignment (clone).

Is there one more solution?

Since reference means its target’s value, address of a reference means its target’s address.

int &r = x;
&r; = &x not &r

Hence, cannot initialize reference to reference or pointer to reference.

int & &rr = r; // reference to reference, rewritten &r
int & pr = &r; // pointer to reference

Cannot get address of r.
rr r X

70 > 100 > 5
80 70 100
pr r X
70 > 100 > 5
80 70 100

As well, an array of reference is disallowed (reason unknown).
int &ra[3] = { i, i, i }; // array of reference
Type qualifiers (see Section 2.5.3, p. 42) can be used to modify pointer types.

const short int s = 25;

const short int «p4 = &s; p4 300 = 25 | s
60 300
int + const p5 = &x;
int &p5 = x; p5 100 > 5 X
70 100
const long int z = 37;
const long int » const p6 = &z; pP6| 308 - 37 z

const long int &p6 = z; 80 308

78 CHAPTER 2. C++

¢ p4 may point at any short int variable (const or non-const) and may not change its value.

Why can p4 point to a non-const variable?

p5 may only point at the int variable x and may change the value of x through the pointer.

o » const and & are constant pointers but » const has no implicit dereferencing like &.

p6 may only point at the long int variable z and may not change its value.

Pointer variable has memory address, so it is possible for a pointer to address another pointer
or object containing a pointer.

int *px = &x, »ppx = &pX,
&rx = X, *prx = ℞

pPpPX pXx
108 > 100
124 108
5 X
prx X 100
100 100
132 116

¢ Pointer/reference type-constructor is not distributed across the identifier list.

int+ p1, p2; pl is a pointer, p2 is an integer int *p1, *p2;
int& rx =i, ry = i; rxis areference, ry is an integer int &rx =i, &ry = i;

2.12.3 Aggregates

e Aggregates are a set of homogeneous/heterogeneous values and a mechanism to access the
values in the set.

2.12.3.1 Array

e Array is a set of homogeneous values.

int array[10]; // 10 int values

e Array type, int, is the type of each set value; array dimension, 10, is the maximum number
of values in the set.

¢ An array can be structured to have multiple dimensions.

int matrix[10][20]; / 10 rows, 20 columns => 200 int values
char cube[5][6][7]; / 5 rows, 6 columns, 7 deep => 210 char values

Common dimension mistake: matrix[10, 20]; means matrix[20] because 10, 20 is a comma
expression not a dimension list.

e Number of dimensions is fixed at compile time, but dimension size may be:

2.12. TYPE CONSTRUCTOR 79

o static (compile time),
o block dynamic (static in block),

o or dynamic (change at any time, see vector Section 2.33.1.1, p. 152).

e C+ only supports a compile-time dimension value; C/g++ allows a runtime expression.

int r, c;

cin >> r >> ¢; // input dimensions

int array[r]; // dynamic dimension, C/g++ only
int matrix[r][c]; // dynamic dimension, C/g++ only

¢ A dimension is subscripted from 0 to dimension-1.
array[5] = 3; // location at column 5
i = matrix[0][2] + 1; // value at row 0, column 2
c = cube[2][0][3]; / value at row 2, column 0, depth 3
Common subscript mistake: matrix[3, 4] means matrix[4], 4th row of matrix.

¢ Do not use pointer arithmetic to subscript arrays: error prone and no more efficient.

e C/C+ array is a contiguous set of elements not a reference to the element set as in Java.

Java | C/C+
int x[] = new int[6] int x[6]
X =6/ 175|108]-1 x| 1[7]5/0]8]-1

¢ C/C+ do not store dimension information in the array!
e Hence, cannot query dimension sizes, no subscript checking, and no array assignment.
e Declaration of a pointer to an array is complex in C/CH (see also page 83).

e Because no array-size information, the dimension value for an array pointer is unspecified.

int i, arr[10];
int =parr = arr; // think parr[], pointer to array of N ints

e However, no dimension information results in the following ambiguity:

int xpvar = &i; // think pvar[] and i[1]
int =parr = arr; // think parr[]

e Variables pvar and parr have same type but one points at a variable and other an array!

e Programmer decides if variable or array by not using or using subscripting.

*pvar // variable
*parr // variable, arr[0]
parr[0], parr[3] // array, many

pvar[3] // array, but wrong

80 CHAPTER 2. C++

e ASIDE: Practise reading a complex declaration:

@)

parenthesize type qualifiers based on operator priority (see Section 2.7, p. 54),

@)

read inside parenthesis outwards,

o

start with variable name,

o

end with type name on the left.

const long int = const a[5] = {0,0,0,0,0};
const long int » const (&x)[5] = a;
const long int (+ const ((&x)[5])) = a;

X L |
vy '
0 000

x : reference to an array of 5 constant pointers to constant long integers

-

2.12.3.2 Structure

e Structure is a set of heterogeneous values, including (nested) structures.

| Java | C/C+ |
class Foo { struct Foo {
inti = 3; inti =3; /7 C++11
... // more fields ... // more members
} }s // semi-colon terminated

Structure fields are called members subdivided into data and routines'

All members of a structure are accessible (public) by default.

Structure can be defined and instances declared in a single statement.

struct Complex { double re, im; } s; // definition and declaration

In C, “struct” must also be specified for a declaration:

struct Complex a, b; // repeat “struct” on variable declaration

Pointers to structures have a problem:

o C/C# are unique in having the priority of selection operator “.” higher than dereference

[I3R2]

operator “+”.
o Hence, *p.f executes as =(p.f), which is incorrect most of the time. Why?
o To get the correct effect, use parenthesis: (+p).f.

(xsp1).name-first[0] = "a’;
(»sp1).age = 34;
(+sp1).marks[5] = 95;

e Alternatively, use (special) operator —> for pointers to structures:

1Java subdivides members into fields (data) and methods (routines).

2.12. TYPE CONSTRUCTOR 81

o performs dereference and selection in correct order, i.e., p—>f rewritten as (+p).f.

sp1->name.first[0] = "a’;
sp1->age = 34,
sp1->marks[5] = 95;

o for reference pointers, —> is unnecessary because r.f means (+r).f, so r.f makes more
sense than (&r)->f.

e Makes switching from a pointer to reference difficult (. <> ->).
e Structures must be compared member by member.

o comparing bits (e.g., memcmp) fails as alignment padding leaves undefined values be-
tween members.

e Recursive types (lists, trees) are defined using a self-referential pointer in a structure:

struct Student {
// data members
Student +link; // pointer to another Student

}

e A bit field allows direct access to individual bits of memory:

struct S {
inti:3; // 3 bits
intj:7; // 7 bits
intk:6; /6 bits

}s;

s.i = 2; // 010
s.j=5; // 0000101
sk=9; /001001

e A bit field must be an integral type.

e Unfortunately allocation of bit-fields is implementation defined = not portable (maybe left
to right or right to left!).

e Hence, the bit-fields in variable s above may need to be reversed.

e While it is unfortunate C/C+ bit-fields lack portability, they are the highest-level mechanism
to manipulate bit-specific information.

2.12.3.3 Union

e Union is a set of heterogeneous values, including (nested) structures, where all members
overlay the same storage.

union U {
. Cc
fnhtair_ ol 1/0110001101100001/0111010000000000
float f; 0 1 2 3
}us

82 CHAPTER 2. C++

e Used to access internal representation or save storage by reusing it for different purposes at
different times.

ucf0] = "c’;uc[1] ="a";uc[2] = "t’"; uc[3] = "\0’;
cout << uC << " " << Ui<< " " << uf << " " << bitset<32>(u.i) << endl;

produces:

cat 7627107 1.06879e-38 00000000011101000110000101100011

¢ Reusing storage is dangerous and can usually be accomplished via other techniques.

2.13 Dynamic Storage Management

e Java/Scheme are managed languages because the language controls all memory manage-
ment, e.g., garbage collection to free dynamically allocated storage.

e C/CH+ are unmanaged languages because the programmer is involved in memory manage-
ment, e.g., no garbage collection so dynamic storage must be explicitly freed.

e C+ provides dynamic storage-management operations new/delete and C provides malloc/free.

® Do not mix the two forms in a C+ program.

Java | C | CH+ |
class Foo { char c1, c2; } || struct Foo { char c1, c2; }; struct Foo { char c1, c2; };
Foo r = new Foo(); struct Foo *p = Foo *p = new Foo();
rcl ='X’'; (struct Foo =) // coerce p->c1 = "X';

// r garbage collected malloc(// allocate delete p; // explicit free
sizeof(struct Foo) // size || Foo &r = *new Foo();
) rcl ='X’";
p->cl1 = 'X'; delete &r; // explicit free
free(p); // explicit free
heap stack
9 S free o
code | static pES -
1 [memory |
low address high address

Unallocated memory in heap is also free.

e Allocation has 3 steps:

1. determine size of allocation,
2. allocate heap storage of correct size/alignment,
3. coerce undefined storage to correct type.

e C+ operator new performs all 3 steps implicitly; each step is explicit in C.

2.13.

DYNAMIC STORAGE MANAGEMENT 83

Coercion cast is required in G+ for malloc but optional in C.

o C has implicit cast from void * (pointer to anything) to specific pointer (dangerous!).

o Good practise in C is to use a cast so compiler can verify type compatibility on assign-
ment.

Parenthesis after the type name in the new operation are optional.

[I3R2]

For reference r, why is there a “+”” before new and an “&” in the delete?
Storage for dynamic allocation comes from a memory area called the heap.
If heap is full (i.e., no more storage available), malloc returns 0, and new raises an exception.

Before storage can be used, it must be allocated.

Foo *p; // forget to initialize pointer with “new”
p->c1 = 'R’; // places ' R" at some random location in memory

Called an uninitialized variable.
After storage is no longer needed it must be explicitly deleted.

Foo *p = new Foo;
p = new Foo; // forgot to free previous storage

Called a memory leak.
After storage is deleted, it must not be used:

delete p;
p->c1 = 'R’; // result of dereference is undefined

Called a dangling pointer.

Unlike Java, C/C+ allow all types to be dynamically allocated not just object types, e.g.,
new int.

As well, C/C+ allow all types to be allocated on the stack, i.e., local variables of a block.
Declaration of a pointer to an array is complex in C/C+ (see also page 79).
Because no array-size information, no dimension for an array pointer.

int ~parr = new int[10]; // think parr[], pointer to array of 10 ints

No dimension information results in the following ambiguity:

int *pvar = new int; // basic “new”
int =parr = new int[10]; // parr[], array “‘new”

Variables pvar and parr have the same type but one is allocated with the basic new and the
other with the array new.

84 CHAPTER 2. C++

e Special syntax must be used to call the corresponding deletion operation for a variable or an
array (any dimensions):

delete pvar; // basic delete : single element
delete [] parr; // array delete : multiple elements (any dimension)

e If basic delete is used on an array, only the first element is freed (memory leak).
e [f array delete is used on a variable, storage after the variable is also freed (often failure).

¢ Never do this:
delete [] parr, pvar; / => (delete [] parr), pvar;

which is an incorrect use of a comma expression; pvar is not deleted.

e Dynamic allocation should be used only when a variable’s storage must outlive the
block in which it is allocated (see also page 103).

Type =+rin(...) {
Type +tp = new Type; /~/ MUST USE HEAP
// initialize/compute using tp
return tp; // storage outlives block

} // to deleted later

e Stack allocation eliminates explicit storage-management (simpler) and is more efficient than
heap allocation — use it whenever possible.

{ // good, use stack { // bad, unnecessary dynamic allocation
int size; int ~sizep = new int;
cin >> size; cin >> «sizep;
int arr[size] int =arr = new int[ssizep];
delete [] arr;
delete sizep;
} // size, arr implicitly deallocated }

e Declaration of a pointer to a matrix is complex in C/C+, e.g., int *m[5] could mean:

(W [—=[x]O]

e Left: array of 5 pointers to an array of unknown number of integers.

¢ Right: pointer to matrix of unknown number of rows with 5 columns of integers.

2.14. TYPE NESTING 85

¢ Dimension is higher priority so declaration is interpreted as int (x(m[5])) (left).
¢ Right example cannot be generalized to a dynamically-sized matrix.

int R =5, C =4, //'5 rows, 4 columns
int (*m)[C] = new int[R][C]; // disallowed, C must be literal, e.g, 4

Compiler must know the stride (number of columns) to compute row.

e [eft example can be generalized to a dynamically-sized matrix.

int main() {
intR =5, C =4; //orcin >> R >> C;
int -\m[R]; // R rows
for (intr=0;r<R;r+=1) {
m[r] = new int[C]; // C columns per row
for (intc=0;c<C;c+=1){
m[r][c] = r + C; // initialize matrix

}

for (intr=0;r<R;r+=1)
for (intc=0;c<C;c+
cout << mfr][c] << ", ";

}

cout << endl;

rint matrix

0

}
for (intr=0;r<R;r+=1){

delete [] m[r]; // delete each row
}

} // implicitly deallocate array “m”

2.14 Type Nesting

e Type nesting is used to organize and control visibility of type names (see Section 2.30, p. 130):

enum Colour { R, G, B, Y, C, M };
struct Person {
enum Colour { R, G, B}; / nested type

struct Face { // nested type
Colour Eyes, Hair; // type defined outside (1 level)
|3
::Colour shirt; // type defined outside (fop level)
Colour pants; // type defined same level
Face looks[10]; // type defined same level
I
Colour ¢ = R; // type/enum defined same level
Person::Colour pc = Person::R; // type/enum defined inside
Person::Face pretty; // type defined inside

e Variables/types at top nesting-level are accessible with unqualified “::”.

e References to types inside the nested type do not require qualification (like declarations in
nested blocks, see Section 2.5.2, p. 42).

86 CHAPTER 2. C++

e References to types nested inside another type are qualified with “::”.

e Without nested types need:

enum Colour { R, G, B, Y, C, M };
enum Colour2 { R2, G2, B2 }; // prevent name clashes
struct Face {
Colour2 Eyes, Hair;
|3

struct Person {
Colour shirt;
Colour2 pants;
Face looks[10];

1

Colour ¢ = R;

Colour2 pc = R2;

Face pretty;

® Do not pollute lexical scopes with unnecessary names (name clashes).

¢ C nested types moved to scope of top-level type.

struct Foo {
struct Bar { // moved outside
int i;
|8
struct Bar bars[10];
|3
struct Foo foo;
struct Bar bar; // no qualification

2.15 Type Equivalence

¢ In Java/C/CH, types are equivalent if they have the same name, called name equivalence.

struct T1 { struct T2 { // identical structure
inti, j, k; inti, j, k;
double x, y, z; double x, vy, z;

I I

T1 11, t11 = t1; // allowed, t1, t11 have compatible types

T2 12 = t1; // disallowed, t2, t1 have incompatible types

T2 t2 = (T2)t1; // disallowed, no conversion from type T1 to T2

e Types T1 and T2 are structurally equivalent, but have different names so they are incom-
patible, i.e., initialization of variable t2 is disallowed.

e An alias is a different name for same type, so alias types are equivalent.

e C/C+ provides typedef to create an alias for an existing type:

2.16. NAMESPACE 87

typedef short int shrint1; // shrint1 => short int
typedef shrint1 shrint2; // shrint2 => short int
typedef short int shrint3; // shrint3 => short int
shrint1 s1; // implicitly rewritten as: short int s1
shrint2 s2; // implicitly rewritten as: short int s2
shrint3 s3; // implicitly rewritten as: short int s3

¢ All combinations of assignments are allowed among s1, s2 and s3, because they have the
same type name ‘“short int”.

e Use to prevent repetition of large type names:

void f(map<string, pair<vector<string>, map<string,string> > > p1,
map<string, pair<vector<string>, map<string,string> > > p2);

typedef map<string, pair<vector<string>, map<string,string> > > Studentinfo;
void f(Studentinfo p1, Studentinfo p2);

¢ Java provides no mechanism to alias types.

2.16 Namespace

e C+ namespace is used to organize programs and libraries composed of multiple types and
declarations to deal with naming conflicts.

¢ E.g., namespace std contains all the I/O declarations and container types.

e Names in a namespace form a declaration region, like the scope of block.

C+ allows multiple namespaces to be defined in a file, as well as among files (unlike Java
packages).

Types and declarations do not have to be added consecutively.

| Java source files | C+ source file
package Foo; // file namespace Foo {
public class X ... / export one type // types / declarations
// local types / declarations }

namespace Foo {

package Foo; // file // more types / declarations

public enum Y ... // export one type }
// local types / declarations namespace Bar {

package Bar; // file // types / declarations
public class Z ... // export one type || }
// local types / declarations

e Contents of a namespace are accessed using full-qualified names:

| Java | CH |

Foo.T t = new Foo.T(); || Foo::T *t = new Foo::T();

88 CHAPTER 2. C++

¢ Or by importing individual items or importing all of the namespace content.

| Java | CH

import Foo.T; || using Foo::T; // declaration
import Foo.*; || using namespace Foo; // directive

e using declaration unconditionally introduces an alias (like typedef, see Section 2.15, p. 86)
into the current scope for specified entity in namespace.

o May appear in any scope.
o If name already exists in current scope, using fails.

namespace Foo { inti = 0; }
inti=1;
using Foo::i; // i exists in scope, conflict failure

e using directive conditionally introduces aliases to current scope for all entities in names-
pace.

o If name already exists in current scope, alias is ignored; if name already exists from
using directive in current scope, using fails.

namespace Foo { inti = 0; }
namespace Bar { inti = 1;}
{
inti =2
using namespace Foo; // i exists in scope, alias ignored

using namespace Foo;
using namespace Bar; // i exists from using directive
i =0; // conflict failure, ambiguous reference to ' i’

}

o May appear in namespace and block scope, but not structure scope.

namespace Foo { // start namespace
enum Colour { R, G, B };
inti =3;
}
namespace Foo { // add more
struct C { int i; };
int j = 4;
namespace Bar { // start nested namespace
typedef short int shrint;
charj="a’;
int C();

2.17. TYPE-CONSTRUCTOR LITERAL 89

intj =0; // global
int main() {
intj = 3; // local
using namespace Foo; // conditional import: Colour, i, C, Bar (not j)
Colour c; // Foo::Colour
cout << i << endl; // Foo::i
C x; // Foo::C
cout << :ij << endl; // global
cout << j << endl; // local
cout << Foo:jj << " " << Bar:j << endl; // qualification
using namespace Bar; // conditional import: shrint, C() (not j)
shrint s = 4; // Bar::shrint
using Foo::j; // disallowed : unconditional import
C(); // disallowed : ambiguous “struct C” or “int C()”
}

e Never put a using declaration/directive in a header file (.h) (pollute local namespace) or
before #include (can affect names in header file).

2.17 Type-Constructor Literal

enumeration | enumerators

pointer nullptr indicates a null pointer

array intv[83]={1,2,3};

structure struct { double r, i;} c = { 3.0, 2.1 };

C uses O/NULL and C+ uses nullptr to initialize pointers (Java null).

Array and structure initialization can occur as part of a declaration.

int m[2][3] = { {93, 67, 72}, {77, 81, 86} }; // multidimensional array
struct { int i; struct { double r, i;} s;} d={1,{ 3.0, 21} }; / nested structure

A multidimensional array or nested structure is created using nested braces.

Initialization values are placed into a variable starting at beginning of the array or structure.

Not all the members/elements must be initialized.
o If not explicitly initialized, a variable is default initialized (see also Section 2.22.3, p. 102),
which means zero-filled for basic types.

int b[10]; // uninitialized
int b[10] = {}; // zero initialized

Cast allows construction of structure and array literals in statements:

void rtn(const int m[2][3]);

struct Complex { double r, i; } c;

rtn((const int [2][3]){ {93, 67, 72}, {77, 81, 86} }); // C99/g++ only
¢ = (Complex){ 2.1, 3.4 }; // C99/g++ only

c={21,341}; / C++11 only, infer type from left-hand side

90

2.18

CHAPTER 2. C++

A cast indicates the type and structure of the literal.

String literals can be used as a shorthand array initializer value:

char s[6] = "abcde"; rewrittenas char s[6] ={ "a’, 'b’, 'c’, 'd’, "e’, "\0' };
It is possible to leave out the first dimension, and its value is inferred from the number of
values in that dimension:

char s[] = "abcde"; // 1st dimension inferred as 6 (Why 67?)
int v[]={0,1,2,3, 4}/ 1st dimension inferred as 5
int m[][3] = { {93, 67, 72}, {77, 81, 86} }; / 1st dimension inferred as 2

Routine

Routine with no parameters has parameter void in C and empty parameter list in C+:

...rin(void) { ...} // C: no parameters
.rin() { ...} // C++: no parameters

o In C, empty parameters mean no information about the number or types of the param-
eters is supplied.

If a routine is qualified with inline, the routine is expanded (maybe) at the call site, i.e.,
unmodularize, to increase speed at the cost of storage (no call).

Routine cannot be nested in another routine (possible in gcc).
Java requires all routines to be defined in a class (see Section 2.22.1, p. 101).

Each routine call creates a new block on the stack containing its parameters and local vari-
ables, and returning removes the block.

Variables declared outside of routines are defined in implicit static block.

int i; // static block, global

const double Pl = 3.14159;

void rin(double d) // code block

{ static const int w = 7; // create static block

} // remove stack block
int main() // code block
{ intj; // create stack block
{ intk; // create stack block
rtn(3.0);
} // remove stack block
} // remove stack block
code static stack
c free
..E. ©| -] = heap > - T| X[-—
. 0/ 3.1 7 memory

low address high address

2.18. ROUTINE 91

Where is the program executing?
e Static block is a separate memory area from stack and heap areas and is default zero filled.
e Otherwise variables are uninitialized.
¢ Good practise is to ONLY use static block for

o constants (anywhere)

bool check(int key) {
static const int vals[] = { 12, 15, 34, 67, 88 }; // allocated ONCE

o global variables accessed throughout program

int callCounter = 0;
int rin1(int key) { callCounter += 1; ... }
int rtn2(int key) { callCounter += 1; ... }

2.18.1 Argument/Parameter Passing

e Modularization without communication is useless; information needs to flow from call to
routine and back to call.

e Communication is achieved by passing arguments from a call to parameters in a routine and
back to arguments or return values.

o value parameter: parameter is initialized by copying argument (input only).

o reference parameter: parameter is a reference to the argument and is initialized to the
argument’s address (input/output).

pass by value pass by reference

argument 100 7 104

copy address-of (&)

parameter 200 104 204

Java/C, parameter passing is by value, i.e., basic types and object references are copied.

e C+, parameter passing is by value or reference depending on the type of the parameter.

For value parameters, each argument-expression result is copied into the corresponding pa-
rameter in the routine’s block on the stack, which may involve an implicit conversion.

For reference parameters, each argument-expression result is referenced (address of) and this
address is pushed on the stack as the corresponding reference parameter.

92

CHAPTER 2. C++

struct S { double d; };

void r1(S s, S &rs, S » const ps) {
s.d = rs.d = ps—>d = 3.0;

}

int main() {
S s1 ={1.0}, s2 = {2.0}, s3 = {7.5};
ri(s1, s2, &s3);
/s1.d=1.0, s2.d = 3.0, s3.d = 3.0

s s2 s3 s s2 s3
argument| 1.0 | | 20 | | 75 || [10 || 3.0 || 3.0 |
100 200 300 100 200 300
parameter | 1.0 | | 200 | | 300 | | [3.0 | | 200 | | 300 |
s rs ps s rs ps
call return

C-style pointer-parameter simulates the reference parameter, but requires & on argument and
use of —> with parameter.

Value passing is most efficient for small values or for large values accessed frequently be-
cause the values are accessed directly (not through pointer).

Reference passing is most efficient for large values accessed less frequently because the
values are not duplicated in the routine but accessed via pointers.

Problem: cannot pass a literal or temporary variable to reference parameter! Why?

void r2(int &i, Complex &c, int v[]);
r2(i + j, (Complex){ 1.0, 7.0 }, (int [3]){ 3, 2, 7 }); // disallowed!

Use type qualifiers to create read-only reference parameters so the corresponding argument
is guaranteed not to change:
void r2(const int &i, const Complex &c, const int v[]) {
i =3; // disallowed, read only!
c.re = 3.0;
v[0] = 3;

}
r2(i + j, (Complex){ 1.0, 7.0 }, (int [3]){ 3, 2, 7 }); // allowed!

Provides efficiency of pass by reference for large variables, security of pass by value as
argument cannot change, and allows literals and temporary variables as arguments.

Good practise uses reference parameters rather than pointer.

C+ parameter can have a default value, which is passed as the argument value if no argu-
ment is specified at the call site.

2.19. OVERLOADING 93

void r3(int i, double g, char c = ' «’, double h = 3.5) { ... }
r3(1, 2.0, 'b’, 9.3); / maximum arguments

r3(1, 2.0, 'b"); // h defaults to 3.5

r3(1, 2.0); // ¢ defaults to ' +', h defaults to 3.5

e In a parameter list, once a parameter has a default value, all parameters to the right must
have default values.

e In a call, once an argument is omitted for a parameter with a default value, no more argu-
ments can be specified to the right of it.

2.18.2 Array Parameter
e Array copy is unsupported (see Section 2.12, p. 74) so arrays cannot be passed by value.

e Instead, array argument is a pointer to the array that is copied into the corresponding array
parameter (pass by value).

¢ A formal parameter array declaration can specify the first dimension with a dimension value,
[10] (which is ignored), an empty dimension list, [], or a pointer, *:

double sum(double v[5]); double sum(double v[]); double sum(double *v);
double sum(double «m[5]); double sum(double -m[]); double sum(double **m);

¢ Good practice uses middle form as it clearly indicates variable can be subscripted.

e An actual declaration cannot use []; it must use *:

double sum(double v[]) { / formal declaration
double =cv; // actual declaration, think cv[]
CV = V; // address assignment

e Routine to add up the elements of an arbitrary-sized array or matrix:

double sum(int cols, double v[]) { double sum(int rows, int cols, double m[]) {

double total = 0.0; double total = 0.0;
for (intc=0;c<cols;c+=1) for (intr=0;r<rows;r+=1)
total += v[c]; for (intc=0;c<cols;c+=1)
return total; total += mir][c];
} return total;

2.19 Overloading

¢ Overloading is when a name has multiple meanings in the same context.

e Most languages have overloading, e.g., most built-in operators are overloaded on both inte-
gral and real-floating operands, i.e., + operator is different for 1 + 2 than for 1.0 + 2.0.

¢ Overloading requires disambiguating among identical names based on some criteria.

94

CHAPTER 2. C++

Normal criterion is type information.

In general, overloading is done on operations not variables:

int i; // disallowed : variable overloading
double i;

void r(int) { ...} / allowed : routine overloading
void r(double) { ...}

Power of overloading occurs when programmer changes a variable’s type: operations on
the variable are implicitly reselected for new type.

E.g., after changing a variable’s type from int to double, all operations implicitly change
from integral to real-floating.

Number and unique parameter types but not the return type are used to select among a
name’s different meanings:

intr(inti,intj){...} / overload name r three different ways
int r(double x, double y) { ... }
intr(intk) {...}

r(1,2); // invoke 1st r based on integer arguments
r(1.0, 2.0); // invoke 2nd r based on double arguments
r(3); // invoke 3rd r based on number of arguments

Implicit conversions between arguments and parameters can cause ambiguities:

r(1, 2.0); / ambiguous, convert either argument to integer or double

o Use explicit cast to disambiguate:

r(1, (int)2.0) / 1st r
r((double)1,2.0) /2ndr

Subtle cases:

int i; unsigned int ui; long int Ii;

void r(inti) { ...} / overload name r three different ways
void r(unsigned int i) { ...}

void r(long inti) { ...}

r(i); // int
r(ui); // unsigned int
r(li); // long int

e Parameter types with qualifiers other than short/long/signed/unsigned are ambiguous at

definition:

intr(inti) {..} // rewritten: int r(signed int)

int r(signed int i) {...} / disallowed : redefinition of first r
int r(const int i) {...} // disallowed : redefinition of first r
int r(volatile int i) {...} / disallowed : redefinition of first r

2.20. DECLARATION BEFORE USE, ROUTINES 95

e Reference parameter types with same base type are ambiguous at call:

intr(inti) {..} // cannot be called
int r(int &) {...} // cannot be called
int r(const int &i) {...} / cannot be called
inti =3;

const int j = 3;
r(i); // disallowed : ambiguous
r(j); // disallowed : ambiguous

Cannot cast argument to select r(int i), r(int &i) or r(const int &i).

¢ Overload/conversion confusion: I/O operator << is overloaded with char = to print a C string
and void + to print pointers.

char c; int i;
cout << &C << " " << &i << endl; / print address of variables

type of &c is char x, so printed as C string, which is undefined; type of &i is int =, which is
converted to void «, so printed as an address.

¢ Fix using coercion.

cout << (void *)&c << " " << &i << endl; // print address of variables

e Overlap between overloading and default arguments for parameters with same type:

‘ Overloading ‘ Default Argument ‘
intr(inti,intj){...} intr(inti,intj=2){...}
intr(inti){intj=2;...}
r(3),/2ndr r(3); // default argument of 2

If the overloaded routine bodies are essentially the same, use a default argument, other-
wise use overloaded routines.

2.20 Declaration Before Use, Routines
¢ Declaration Before Use (DBU) means a variable declaration must appear before its usage

in a block.

e In theory, a compiler could handle some DBU situations:

{

cout << i << endl; // prints 4 ?
inti =4; // declaration after usage

}

but ambiguous cases make this impractical:

96

CHAPTER 2. C++

inti =3;
{

cout << i << endl; // which i?
inti=4;
cout << i << endl;

}
C always requires DBU.
C+ requires DBU in a block and among types but not within a type.
Java only requires DBU in a block, but not for declarations in or among classes.

DBU has a fundamental problem specifying mutually recursive references:

void f() { // fcalls g
g0); // g is not defined and being used
}

void g(){ / gcallsf
f(); // fis defined and can be used
}

Caution: these calls cause infinite recursion as there is no base case.

Cannot type-check the call to g in f to ensure matching number and type of arguments and
the return value is used correctly.

Interchanging the two routines does not solve the problem.

A forward declaration introduces a routine’s type (called a prototype/signature) before its
actual declaration:

int f(int i, double); / routine prototype: parameter names optional
// and no routine body
int f(int i, double d) { / type repeated and checked with prototype

}
Prototype parameter names are optional (good documentation).
Actual routine declaration repeats routine type, which must match prototype.

Routine prototypes also useful for organizing routines in a source file.

int main(); // forward declarations, any order
void g(int i);
void f(int i);
int main() { // actual declarations, any order
f(5);
a(4);

}
void g(inti){...}
void f(inti){...}

2.21. PREPROCESSOR 97

e E.g., allowing main routine to appear first, and for separate compilation (see Section 2.23, p. 115).

2.21 Preprocessor

e Preprocessor is a text editor that modifies the program text before compilation.
e Program you see is not what the compiler sees!

e —E run only the preprocessor step and write preprocessor output to standard out.

$ g++ -E *cc ...
... much output from the preprocessor

2.21.1 File Inclusion

e File inclusion copies text from a file into a C/C+ program.

#include statement specifies the file to be included.
¢ C convention uses suffix “.h” for include files containing C declarations.

e C+ convention drops suffix “.h” for its standard libraries and has special file names for
equivalent C files, e.g., cstdio versus stdio.h.

#include <stdio.h> // C style
#include <cstdio> // C++ style
#include "user.h"

e -v show each compilation step and its details:

$ g++ =V =.cC *.0 ...
... much output from each compilation step

E.g., include directories where cpp looks for system includes.

#include <...> search starts here:
/usr/include/c++/4.6
/usr/include/c++/4.6/x86_64~linux-gnu/.
/usr/include/c++/4.6/backward
/usr/lib/gcc/x86_64-linux-gnu/4.6/include
/usr/local/include
/ust/lib/gcc/x86_64-linux-gnu/4.6/include-fixed
/usr/include/x86_64-linux-gnu

/usr/include

e -Idirectory search directory for include files;

o files within the directory can now be referenced by relative name using #include <file-name>.

98 CHAPTER 2. C++

2.21.2 Variables/Substitution

e #define statement declares a preprocessor string variable or macro, and its value/body is the
text after the name up to the end of line.

e Preprocessor can transform the syntax of C/C+ program (discouraged).

#define Malloc(T) (T =)malloc(sizeof(T))
int «ip = Malloc(int);

#define For(v, N) for (unsigned intv =0;i < N;i +=1)
For(i,10) { ...}

#define Exit(c) if (¢) break
for (55){

Exit(a > b);

e Replace #define constants with enum (see Section 2.12.1, p. 75) for integral types; other-
wise use const declarations (see Section 2.5.3, p. 42) (Java final).

enum { arraySize = 100 }; #define arraySize 100
enum { PageSize = 4 » 1024 }; #define PageSize (4 « 1024)
const double Pl = 3.14159; #define Pl 3.14159

int array[arraySize], pageSize = PageSize;

double x = PI;

¢ Use inline routines in C/C+ rather that #define macros (see page 149).

inline int MAX(int a,intb) {returna>b ?a:b;}

¢ -D define and optionally initialize preprocessor variables from the compilation command:
% g++ —DDEBUG="2" —DASSN ... source-files

Initialization value is text after =.

e Same as following #defines in a program without changing the program:

#define DEBUG 2
#define ASSN 1

¢ Redefinition warning if both —D and #define for the same variable.

¢ Predefined preprocessor-variables exist identifying hardware and software environment, e.g.,
mcpu is kind of CPU.

2.22. OBJECT 99

2.21.3 Conditional Inclusion

e Preprocessor has an if statement, which may be nested, to conditionally add/remove code
from a program.

e Conditional if uses the same relational and logical operators as C/C+, but operands can only
be integer or character values.

#define DEBUG 0 // declare and initialize preprocessor variable

#if DEBUG == 1 // level 1 debugging
include "debugl.h"

#elif DEBUG == 2 // level 2 debugging
include "debug2.h"

#'e'lse // non-debugging code
#rendif

¢ By changing value of preprocessor variable DEBUG, different parts of the program are in-
cluded for compilation.

¢ To exclude code (comment-out), use 0 conditional as 0 implies false.
#if 0
// code commented out
#endif
¢ Like Shell, possible to check if a preprocessor variable is defined or not defined using #ifdef

or #ifndef:

#ifndef __MYDEFS_H__ // if not defined
#define __MYDEFS_H__ 1 / make it so

#endif
e Used in an #include file to ensure its contents are only expanded once (see Section 2.23, p. 115).

e Note difference between checking if a preprocessor variable is defined and checking the
value of the variable.

e The former capability does not exist in most programming languages, i.e., checking if a
variable is declared before trying to use it.

2.22 Object

e Object-oriented programming was developed in the mid-1960s by Dahl and Nygaard and
first implemented in SIMULAG67.

100

CHAPTER 2. C++

¢ Object programming is based on structures, used for organizing logically related data (see Sec-

tion 2.12.3, p. 78):

| unorganized | organized |
struct Person {
int people_age[30]; int age;
bool people_sex[30]; bool sex;
char people_name[30][50]; char name[50];
} people[30];

Both approaches create an identical amount of information.

Difference is solely in the information organization (and memory layout).

Computer does not care as the information and its manipulation is largely the same.
Structuring is an administrative tool for programmer understanding and convenience.
Objects extend organizational capabilities of a structure by allowing routine members.

Java has either a basic type or an object, i.e., all routines are embedded in a struct/class
(see Section 2.18, p. 90).

‘ structure form ‘ object form ‘
struct Complex { struct Complex {
double re, im; double re, im;
b double abs() const {
double abs(const Complex &This) { return sqgrt(re * re +
return sqrt(This.re » This.re + im = im);
This.im * This.im); }
} I
Complex x; // structure Complex x; // object
d=abs(x); /call abs d = x.abs(); // call abs

An object provides both data and the operations necessary to manipulate that data in one
self-contained package.

Both approaches use routines as an abstraction mechanism to create an interface to the in-
formation in the structure.

Interface separates usage from implementation at the interface boundary, allowing an ob-
ject’s implementation to change without affecting usage.

E.g., if programmers do not access Complex’s implementation, it can change from Cartesian
to polar coordinates and maintain same interface.

Developing good interfaces for objects is important.

o e.g., mathematical types (like complex) should use value semantics (functional style)
versus reference to prevent changing temporary values.

2.22. OBJECT 101

2.22.1 Object Member

¢ A routine member in a structure is constant, and cannot be assigned (e.g., const member).
e What is the scope of a routine member?

e Structure creates a scope, and therefore, a routine member can access the structure members,
e.g., abs member can refer to members re and im.

e Structure scope is implemented via a T = const this parameter, implicitly passed to each
routine member (like left example).

double abs() const {
return sqrt(this->re » this->re + this->im = this->im);
}
Since implicit parameter “this” is a const pointer, it should be a reference.
e Except for the syntactic differences, the two forms are identical.
e The use of implicit parameter this, e.g., this—>f, is seldom necessary.
e Member routine declared const is read-only, i.e., cannot change member variables.

e Member routines are accessed like other members, using member selection, x.abs, and called
with the same form, x.abs().

¢ No parameter needed because of implicit structure scoping via this parameter.

* Nesting of object types only allows static not dynamic scoping (see Section 2.14, p. 85)
(Java allows dynamic scoping).

struct Foo {

int g;
intr() { ...}
struct Bar { // nested object type
ints() { g =3;r();} / disallowed, dynamic reference
; // to specific object
Y XY, 7

References in s to members g and r in Foo disallowed because must know the this for specific
Foo object, i.e., which x, y or z.

e Extend type Complex by inserting an arithmetic addition operation:

struct Complex {

66mplex add(Complex ¢) {
return { re + c.re, im + c.im };
}

1

e To sum x and y, write x.add(y), which looks different from normal addition, x + y.

102 CHAPTER 2. C++

e Because addition is a binary operation, add needs a parameter as well as the implicit context
in which it executes.

¢ Like outside a type, C+ allows overloading members in a type.

2.22.2 Operator Member

e It is possible to use operator symbols for routine names:
struct Complex {

Complex operator+(Complex ¢) { / rename add member
return { re + c.re, im + c.im };

}
1

¢ Addition routine is called +, and x and y can be added by x.operator+(y) or y.operator+(x),
which looks slightly better.

e Fortunately, C+ implicitly rewrites x + y as x.operator+(y).

Complex x = {3.0,52},y={-91,741};

cout << "x:" << x.re << "+" << x.im << "1i" << endl;

cout << "y:" << yre << "+" << y.im << "i" << endl;
Complex sum = x +y; // rewritten as x.operator+(y)

cout << "sum:" << sum.re << "+" << sum.im << "i" << endl;

2.22.3 Constructor

¢ A constructor member implicitly performs initialization after object allocation to ensure the
object is valid before use.

o implicit constructor

struct Complex {
double re = 0.0, im = 0.0; / C++11
... // other members
I
o explicit constructor

struct Complex {
double re, im;
Complex() { re = im = 0.0; } / default constructor
... // other members

I§
e Explicit constructor can perform arbitrary execution (e.g., ifs, loops, calls).
Complex x; x.Complex();

Complex x; implicitly .
. Complex *y = new Complex;
Complex »y = new Complex; rewritten as P y y—>CompIe?<();

2.22. OBJECT 103

e Constructor name must match the structure name.

e Constructor without parameters is the default constructor, for initializing a new object.
¢ Both implicit and explicit constructors allowed = double initialization.

e Unlike Java, CH does not initialize all object members to default values.

e Constructor normally initializes members not initialized via other constructors, i.e., some
members are objects with their own constructors.

¢ A constructor may have parameters but no return type (not even void).

e Never put parentheses to invoke default constructor for declaration.

Complex x(); // routine prototype, no parameters returning a complex

¢ Overloading and default parameters allowed.

struct Complex {
double re, im;
Complex(double r = 0.0, double i = 0.0) { re = r; im = i; }

1

e Call constructor using parameters or field initialization.

Complex x, y(3.2), z(3.2, 4.5);
Complex x, y ={ 3.2}, z=1{3.2,451}; / C++11, rewrites to first
Complex x, y{ 3.2 }, z{ 3.2, 4.5 }; // C++11, rewrites to first

¢ Declarations implicitly rewritten as:

Complex x; x.Complex(0.0, 0.0);
Complex y; y.Complex(3.2, 0.0);
Complex z; z.Complex(3.2, 4.5);

~— ~— ~—

(see declaring stream files page 48)

¢ For dynamic allocation, constructor arguments after type:

Complex *x = new Complex; // x->Complex();
Complex «y = new Complex(3.2, 4.5); / y->Complex(3.2, 4.5);
Complex *z = new Complex{ 3.2 }; / z->Complex(3.2);

e Constructor may force dynamic allocation when initializating an array of objects.

104 CHAPTER 2. C++

Complex ac[10]; // complex array default initialized to 0.0+0.0i
for (inti=0;i<10;i+=1){

acl[i] = { i, i + 2.0 }; // assignment, constructor already called
}

Complex =ap[10]; // array of complex pointers
for (inti=0;i<10;i+=1){
ap[i] = new Complex(i, i + 2.0); // initialization, constructor called

for (inti=0;i<10;i+=1){
delete apl[i];
1

See Section 2.22.5, p. 108 for difference between initialization and assignment.

e If only non-default constructors are specified, i.e., ones with parameters, an object cannot
be declared without an initialization value:

struct Foo {
// no default constructor
Foo(inti){...}

1

Foo x; // disallowed!!!

Foo x(1); // allowed

e Constructor can be called explicitly in another constructor (see Section 2.22.6, p. 113 for
constructor initialization syntax):

| Java | CH+ |
class Foo { struct Foo {
int i, j; int i, j;
Foo(intp) {i=p;j=1;} Foo(intp){i=p;j=1;}
Foo() { this(2); } Foo() : Foo(2) {} // C++11
} I

2.22.3.1 Literal

e Constructors can be used to create object literals (see Section 2.17, p. 89):

Complex x, vy, z;

={32} // Complex(3.2)

x +{3.2 45} // disallowed

X + (Complex){ 3.2, 4.5 }; // g++

x + Complex(2) +vy; / 2 widened to 2.0, Complex(2.0)

N< < X

2.22.3.2 Conversion

e Constructors are implicitly used for conversions (see Section 2.7.1, p. 55):

2.22. OBJECT 105

int i;

double d;

Complex x, y;

X = 3.2; x = Complex(3.2);

y =x+ 1.3; implicitly y = x.operator+(Complex(1.3));

y =X+ i rewritten as y = x.operator+(Complex((double)i);
y =X + d; y = x.operator+(Complex(d));

e Allows built-in literals and types to interact with user-defined types.

¢ Note, two implicit conversions are performed on variable i in x + i: int to double and then
double to Complex.

e Can require only explicit conversions with qualifier explicit on constructor:

struct Complex {
// turn off implicit conversion
explicit Complex(double r = 0.0, double i = 0.0) {re =r; im =i; }

I
e Problem: implicit conversion disallowed for commutative binary operators.

e 1.3 + x, disallowed because it is rewritten as (1.3).operator+(x), but member
double operator+(Complex) does not exist in built-in type double.

e Solution, move operator + out of the object type and made into a routine, which can also be
called in infix form (see Section 2.19, p. 93):

struct Complex { ... }; // same as before, except operator + removed
Complex operator+(Complex a, Complex b) { / 2 parameters
return Complex(a.re + b.re, a.im + b.im);

}

X +Y;) o operator+(X, y)

1.3 + X; implicitly operator+(Complex(1.3), x)
X + 1.3; rewritten as operator+(x, Complex(1.3))

e Compiler checks for an appropriate operator in object type or an appropriate routine (it is
ambiguous to have both).

o For operator in object type, applies conversions to only the second operand.

o For operator routine, applies conversions to both operands.

e In general, commutative binary operators should be written as routines to allow implicit
conversion on both operands.

¢ [/O operators << and >> often overloaded for user types:

106 CHAPTER 2. C++

ostream &operator<<(ostream &os, Complex ¢) {
return os << c.re << "+" << c.im << "i";
}

cout << "x:" << X; // rewritten as: operator<<(cout.operator<<(“x:”), x)

e Standard C+ convention for I/O operators to take and return a stream reference to allow
cascading stream operations.

® << operator in object cout is used to first print string value, then overloaded routine << to
print the complex variable x.

e Why write as a routine versus a member?

2.22.4 Destructor

¢ A destructor (finalize in Java) member implicitly performs uninitialization at object deallo-

cation:
| Java | CH+ |
class Foo { struct Foo {
finalize() { ...) ~Foo() { ... } // destructor
} |3

[IRE
~

¢ Object type has one destructor; its name is the character followed by the type name (like

a constructor).
¢ Destructor has no parameters nor return type (not even void):

e Destructor is only necessary if an object is non-contiguous, i.e., composed of multiple
pieces within its environment, e.g., files, dynamically allocated storage, etc.

¢ A contiguous object, like a Complex object, requires no destructor as it is self-contained
(see Section 2.24, p. 119 for a version of Complex requiring a destructor).

e Destructor is invoked before an object is deallocated, either implicitly at the end of a block
or explicitly by a delete:

{ // allocate local storage

Foo x, y(X); Foo x, y; x.Foo(); y.Foo(x);
Foo *z = new Foo; Foo *z = new Foo; z->Foo0();
e implicitly e

delete z; rewritten as z->~Foo(); delete z;

y.~Foo(); x.~Foo();
} } // deallocate local storage

e For local variables in a block, destructors must be called in reverse order to constructors
because of dependencies, e.g., y depends on x.

2.22. OBJECT 107

e Destructor is more common in C+ than finalize in Java as no garbage collection in G

e If an object type performs dynamic storage allocation, it is non-contiguous and needs a
destructor to free the storage:
struct Foo {
int «i; // think int i[]
Foo(int size) { i = new int[size]; } // dynamic allocation
~Foo() { delete [1i;} / must deallocate storage

I
e Except if the dynamic object is transfered to another object for deallocation.

e CH destructor is invoked at a deterministic time (block termination or delete), ensuring
prompt cleanup of the execution environment.

e Java finalize is invoked at a non-deterministic time during garbage collection or not at all, so
cleanup of the execution environment is unknown.

e Destructor is implicitly noexcept, unless inheriting from class with noexcept(false) de-
structor.

¢ Hence, a destructor can raise an exception.

struct E {};
struct C {
~C() noexcept(false) { throw E(); } | y’s destructor
b | throw E
try { // outer try inner try x’s destructor
C x; // raise on deallocation |y | throw E
try { /inner try outer try outer try
C y; // raise on deallocation | x | x
} catch(E) {...} / inner handler
} catch(E) {...} / outer handler

o y’s destructor called at end of inner try block, it raises an exception E, which unwinds
destructor and try, and handled at inner catch

o x’s destructor called at end of outer try block, it raises an exception E, which unwinds
destructor and try, and handled at outer catch

¢ A destructor cannot raise an exception during propagation.

struct F {};
try {
C x; // raise on deallocation
... throw F(); ...
} catch(E) {...}
catch(F) {...}

1. raise of F causes unwind of inner try block

108 CHAPTER 2. C++

2. x’s destructor called during unwind, it raises an exception E, which terminates program
e Reason:

1. Cannot start second exception without handler to deal with first exception, i.e., cannot
drop exception and start another.

2. Cannot postpone first exception because second exception may remove its handlers
during its stack unwinding.

¢ Allocation/deallocation (RAII — Resource Acquisition Is Initialization)

struct Alloc {
Complex =ptr;
int size;
public:
Alloc(Complex =ptr, int size) : ptr(ptr), size(size) {
for (inti=0;i<size;i+=1){
ptr[i] = new Complex(i, i + 2.0);
}

}
~Alloc() {
for (inti=0;i<size;i+=1){
delete ptr[i];
}

}
b
void f(...) {
Complex =ap[10], *bp[20]; // array of complex pointers
Alloc alloca(ap, 10), allocb(bp, 20); / allocate complex elements
... // normal, local and non-local return
} // automatically delete objs by destructor

e Storage released for normal, local transfer (break/return), and exception.

e Special pointer type with RAII deallocation for each array element.

#include <memory>

{
unique_ptr<Complex> uac[10], ubc[20]; / C++11

for (inti=0;i<10;i+=1){
uacfi].reset(new Complex(i, i + 2.0)); / C++11
uab[i].reset(new Complex(i, i + 2.0)); / C++11
// uacli] = make_unique<Complex>(i, i + 2.0); // initialization, C++14

} // automatically delete objs for each uac by destructor

2.22.5 Copy Constructor / Assignment

e There are multiple contexts where an object is copied.

1. declaration initialization (ObjType obj2 = obj1)
2. pass by value (argument to parameter)

2.22. OBJECT 109

3. return by value (routine to temporary at call site)
4. assignment (0bj2 = obj1)

Cases 1 to 3 involve a newly allocated object with undefined values.

Case 4 involves an existing object that may contain previously computed values.

C#+ differentiates between these situations: initialization and assignment.

Constructor with a const reference parameter of class type is used for initialization (decla-
rations/parameters/return), called copy constructor:

Complex(const Complex &c) { ... }

Declaration initialization:
Complex y = x; implicitly rewritten as Complex y; y.Complex(x);

69

o “=”1s misleading as copy constructor is called not assignment operator.

o value on the right-hand side of “=” is argument to copy constructor.

Parameter/return initialization:

Complex rtn(Complex a, Complex b) { ... return a; }
Complex x, y;
X =rtn(X, y); // creates temporary before assignment

o parameter is initialized by corresponding argument using its copy constructor:

Complex rtn(Complex a, Complex b) {
a.Complex(arg1); b.Complex(arg2); // initialize parameters
. // with arguments

o temporaries may be created for arguments and return value, initialized using copy con-

structor:
Complex t1(x), t2(y);
Complex tr(rtn(t1, 12));
X =1n(); implicitly rewritten as x.operator=(tr);

or
x.operator=(rtn(x, y));
e Assignment routine is used for assignment:
Complex &operator=(const Complex &rhs) { ...}
o usually most efficient to use reference for parameter and return type.

o value on the right-hand side of “=" is argument to assignment operator.

x =y; implicitly rewritten as x.operator=(y);

e If a copy constructor or assignment operator is not defined, an implicit one is generated that
does a memberwise copy of each subobject.

110 CHAPTER 2. C++

o basic type, bitwise copy
o class type, use class’s copy constructor or assignment operator
o array, each element is copied appropriate to the element type

struct B {
B() { cout << "B() ";}
B(const B &c) { cout << "B(&) ";}
B &operator=(const B &rhs) { cout << "B- "}

1

struct D { // implicit copy and assignment
int i; // basic type, bitwise
B b; // object type, memberwise
B a[5]; // array, element/memberwise
b
int main() {
cout << "b a" << endl;
D i; cout << endl; // B's default constructor
D d =i; cout << endl; / D’s default copy-constructor
d=1i; cout<<endl; /D's default assignment
}

outputs the following:
b a // member variables
B() B() B() B() B() B() /' Di

B(&) B(&) B(&) B(&) B(&) B(&) 7/ D d =i
B= B= B= B= B= B= Vd=1

e Often only a bitwise copy as subobjects have no copy constructor or assignment operator.

e If D defines a copy-constructor/assignment, it overrides one in subobject.

struct D {
.. // same declarations
D() { cout << "D() "; }
D(const D &) :i(c.i), b(c.b), a(c.a) { cout << "D(&) ";}

D &operator=(const D &rhs) {
i = rhs.i; b = rhs.b;
for (inti=0;i<5;i+=1) a[i] = rhs.a[i]; / array copy
cout << "D=";
return +this;
}
b

outputs the following:

b a // member variables

B() B() B() B() B() B() D() /Di
B(&) B() B(&) B(&) B(&) B(&) D(&) /D d = i
B= B= B= B= B= B= D= /d =i

Must copy each subobject to get same output.

2.22. OBJECT 111

e When an object type has pointers, it is often necessary to do a deep copy, i.e, copy the
contents of the pointed-to storage rather than the pointers (see also Section 2.24, p. 119).

struct Shallow {
int «i;
Shallow(int v) { i = new int; «i = v; }
~Shallow() { delete i; }

struct Deep {
int «i;
Deep(intv) { i = new int; +i =v;}
~Deep() { delete i; }
Deep(Deep &d) { i = new int; +xi = +xd.i; } // copy value
Deep &operator=(const Deep &rhs) {

*i = »rhs.i; return sthis; // copy value
}
I
initialization
Shallow x(3), y = x; Deep x(3), y = x;
y —~ X y X
shallow copy ! ! !
deep co
newx.i| 3 3 = peopy 3
assignment
Shallow x(3), y(7); ¥ =X; Deep x(3), ¥(7); y=X;
y T~ X y X
shallow copy ! ! !
deep co
newy.i| 7 newx.i| 3 X 3= peopy 3
memory leak dangling pointer

e For shallow copy:

o memory leak occurs on the assignment

o dangling pointer occurs after x or y is deallocated; when the other object is deallocated,
it reuses this pointer to delete the same storage.

e Deep copy does not change the pointers only the values associated within the pointers.

¢ Duplicate code, correctness, and performance.

112 CHAPTER 2. C++

struct Varray { // variable-sized array
unsigned int size;
int «a;
Varray(unsigned int s) { size = s; a = new int[size]; }
~Varray() { delete [] a; }
Varray(const Varray &rhs) { // copy constructor

a = new int[rhs.size]; // create storage
size = rhs.size; // set new size
for (unsigned inti = 0; i < size; i += 1)
a[i] = rhs.a[i]; // copy values
}
Varray &operator=(const Varray &rhs) { // deep copy
delete [] a; // delete old storage
a = new int[rhs.size]; // create new storage
size = rhs.size; // set new size
for (unsigned inti = 0; i < size; i += 1)
a[i] = rhs.a[i]; // copy values

return +this;

}
I
Varray x(5), y(x);
X =Y; // works
y =vy; // could fail

e Remove duplicate code with copy and swap idiom.

Varray &operator=(const Varray &rhs) {
Varray temp(rhs); // calls copy constructor
swap(size, temp.size); // polymorphic swap members
swap(a, temp.a);
// temp’ s destructor frees a’ s storage because of swap
return +this;

} // temp deallocated

e Beware self-assignment for pointer variables, y = y.

o Which pointer problem is this, and why can it go undetected?

o How can this problem be fixed for both approaches?
e Performance is a problem because of excessive dynamic allocation.

o realloc is often twice as fast as delete/new/copy.

void copy(const Varray &rhs) { // remove duplicate code

size = rhs.size; // set new size
for (unsigned int i = 0; i < size; i += 1)
a[fi] = rhs.a[i]; // copy values
Varray(const Varray &rhs) { // copy constructor
a = new int[rhs.size]; // create storage

copy(rhs);

2.22. OBJECT 113

Varray &operator=(const Varray &rhs) {
a = (int +)realloc(a, rhs.size » sizeof(a[0])); / resize storage
copy(rhs);

}

o realloc uses any free space at end of allocation; otherwise does delete/new/copy.
o Handles self-assignment. Why?

o Copy/swap performance is 4+ times slower for pointers to data as no storage reused.

X y
| realloc

N B e
L

e e

reuse storage
o Resize array, add/remove nodes to equal right-hand side, and reuse remaining nodes.

e May also need an equality operator (operator==) performing a deep compare, i.e., compare
values not pointers.

2.22.6 Initialize const/ Object Member

e C/C+ const members and local objects of a structure must be initialized at declaration:

struct Bar {
Bar(inti) {}
// no default constructor
} bar(3), baz(4);
struct Foo {
constinti=3; / C++11
Bar » const p = &bar;
Bar &rp = bar;
Barb={7}; /b(7)
1
Foo w1,
w2 = { 2, &baz, baz, 9 }, // disallowed, no constructor
w3(2, &baz); // disallowed, no constructor

¢ Add constructor:

Foo(const int i = 3, Bar » const p = &bar, Bar &p = bar, Barb = { 7 }) {

Foo:i = i; // disallowed
Foo::p = p; // disallowed
Foo:rp = rp;

Foo:b = b;

114 CHAPTER 2. C++

¢ Assignment disallowed as constants could be used before initialization:

cout << i << endl; // no value in constant
Foo:i = i;

Special syntax to initialize at point of declaration.
Foo(const int i = 3, Bar » const p = &bar, Bar &rp = bar, Barb ={7})

i(i), p(p), rp(rp), b(b) { / special initialization syntax
cout << i << endl; / now value in constant

¢ Ensures const/object members are initialized before used in constructor.

Must be initialized in declaration order to prevent use before initialization.

Syntax may also be used to initialize any local members:

struct Foo {
Complex c;
int k;
Foo() : e(1,2), k(14) { / initialize c, k
c = Complex(1,2); // orassignc, k
k = 14;
}
|3

e Initialization may be more efficient versus default constructor and assignment.

2.22.7 Static Member

e Static data-member creates a single instance for object type versus for object instances.

struct Foo {
static int cnt; // one for all objects
int i; // one per object

1

o exist even if no instances of object exist
o must still be defined (versus declared in the type) in a .cc file.
o allocated in static block not in object.

e Static routine-member, used to access static data-members, has no this parameter (i.e., like
a regular routine)

2.23. SEPARATE COMPILATION, ROUTINES 115

e E.g., count the number of Foo objects created.
struct Foo {

int cnt = 0; static int cnt;
int i;

void stats() { static void stats() {

cout << cnt; cout << cnt; // allowed
} i =3; // disallowed
struct Foo { mem(); // disallowed

int i; }

void mem() {...} void mem() {...}

Foo() { Foo() {

ent += 1; cnt += 1; // allowed

} }
b I
int Foo::cnt = 0; // declaration (optional initialization)
int main() { int main() {
Foo x, y; Foo x, v;

's't'atS(); Edo::stats();

ode static stack

o

free
he ap —— -
memory

:Foo::stats
main
:Foo::cnt

¢ Object member mem can reference i, cnt and stats.

e Static member stats can only reference cnt.

2.23 Separate Compilation, Routines

e As program size increases, so does cost of compilation.

e Separate compilation divides a program into units, where each unit can be independently
compiled.

e Advantage: saves time by recompiling only program unit(s) that change.

@)

In theory, if an expression is changed, only that expression needs to be recompiled.

o

In practice, compilation unit is coarser: translation unit (TU), which is a file in C/C+-.

@)

In theory, each line of code (expression) could be put in a separate file, but impractical.

o So a TU should not be too big and not be too small.

¢ Disadvantage: TUs depend on each other because a program shares many forms of informa-
tion, especially types (done automatically in Java).

116 CHAPTER 2. C++

o Hence, need mechanism to import information from referenced TUs and export infor-
mation needed by referencing TUs.

e E.g., program in file prog.cc using multiple routines:

prog.cc
#include <iostream> // import
#include <cmath> // sqrt

double f(double);
double g(double);
int cntf = O;
double f(double d) {
cntf += 1; // count f calls
cout << d << endl;
return g(d);
}
double g(double d) {
cout << d << endl;
return f(sqrt(d));
1
int main() {
cout << cntf << " " << f(35) << " " << g(7.1) << endl;
}

e TU prog.cc has references to items in iostream and cmath.
e As well, there are references within TU, e.g., main references f and g.

e Subdividing program into TUs in C/C+ is complicated because of import/export mechanism.

prog.cc
exec
L. program
monolithic |~ ____| = |executable
g++ prog.cc -0 exec
unit1.cc)
unit1.o
TU; program; exec
separate unit2.cc , executable
unit2.o
TU, programy
g++ -C unit*.cc g++ unit*.o -0 exec

e TU; is NOT a program; program formed by combining TUs.

2.23. SEPARATE COMPILATION, ROUTINES

117

e Compile each TU; with —c compiler flag to generate executable code in .o file (Java has

.class file).

$ g++ —c unit«.cc ... // compile only modified TUs

generates files unit1.0 containing a compiled version of source code (machine code).

e Combine TU; with —o compiler flag to generate executable program.

$ g++ unit~.0o —0 exec // create new excutable program “exec”

e Separate program into 3 TUs in files f.cc, g.cc and prog.cc (arbitrary names):

f.cc g.cc

#include <iostream> // import
using namespace std;
extern double g(double);
int cntf = 0; // export
double f(double d) {
cntf += 1; // count f calls
cout << d << endl;
return g(d);

}

prog.cc
#include <iostream> // import
using namespace std;
extern double f(double);
extern double g(double);
extern int cntf;
int main() { // export

#include <iostream> // import
#include <cmath>
using namespace std;
extern double f(double);
double g(double d) { // export
cout << d << endl;
return f(sqrt(d));

cout << cntf << " " << f(35) << " " << g(7.1) << endl;

}

e TU explicitly imports using extern declarations, and implicitly exports variable and routine

definitions.

e Compilation takes 4 steps:

$ g++ -Wall —=c f.cc # creates compiled file f.o
$ g++ -Wall —c g.cc # creates compiled file g.o
$ g++ -Wall —c prog.cc # creates compiled file prog.o
$ g++ prog.o f.0o g.o —o prog # creates executable file a.out

$./prog # run program

Why no -Wall flag when creating executable?

e All .o files MUST be compiled for same hardware architecture, e.g., x86.

¢ Change to f.cc only needs 2 step compilation:

118

$ g++ -Wall —c f.cc
$ g++ prog.o f.0 g.o —o prog
$./prog

CHAPTER 2. C++

creates new compiled file f.o
creates new executable file a.out
run program

¢ Problem: many duplicate import declarations. What if type of f changes?

e Subdivide TUs: interface for import (.h) and implementation for code (.cc).

f.h

f.cc

extern double f(double);
extern int cntf;

#include <iostream> // import
using namespace std;
#include "£.h" // optional
#include "g.h"
int cntf = 0; // export
double f(double d) {

cntf += 1; // count f calls

cout << d << endl;

return g(d);

}

prog.cc

@)

@)

o

@)

o

@)

#include <iostream> // import
using namespace std;
#include "g.h"

#include "£.h"

int main() { // export

g.h
extern double g(double);
g.cc
#include <iostream> // import
#include <cmath>
using namespace std;
#include "g.h" // optional
#include "£.h"
double g(double d) { // export
cout << d << endl;
return f(sqrt(d));

cout << cntf << " " << f(35) << " " << g(7.1) << endl,

}

Why not include f.cc and g.cc into prog.cc?

Is there still duplicated information that has to be maintained?

Why is it a good practise to include f.h in f.cc?

If f.cc includes f.h, is it correct to export and import in the same TU?
Why use quotes " rather than chevrons <> for the .h files?

Why not put includes for iostream and cmath into .h files?

(Usually) no code, just descriptions : preprecessor variables, C/C+ types and forward dec-
larations (see Section 2.20, p. 95).

Implementation is composed of definitions and code.
extern qualifier means variable or routine definition is located elsewhere (not for types).

Preprocessor #includes indirectly import by copying in extern declarations, e.g., iostream
copies in extern ostream cout;.

2.24. SEPARATE COMPILATION, OBJECTS 119

e Problem: infinite inclusion of included file f.h and g.h!

e Use preprocessor trick (see Section 2.21.3, p. 99) to only expand file once:

f.h
#ifndef __F_H__ // if not defined
#define __F_H__ 1 // make it so
extern double f(double);
#endif

2.24 Separate Compilation, Objects

e Separately compiling classes has its own complexities.

e For example, program in file prog.cc using complex numbers:

prog.cc
#include <iostream> // import
#include <cmath> // sqrt

using namespace std;
struct Complex {
static int objects; // shared counter
double re, im;
Complex(double r = 0.0, double i = 0.0) { objects += 1; ...}
double abs() const { return sqrt(re * re + im = im); };
static void stats() { cout << objects << endl; }
|3
int Complex::objects; // declare
Complex operator+(Complex a, Complex b) {...}
... // other arithmetic and logical operators
ostream &operator<<(ostream &os, Complex ¢) {...}
const Complex C_1(1.0, 0.0);
int main() {
Complex a(1.3), b(2., 45), ¢(-3, -4);
cout << a+b +c+ C_1 << c.abs() << endl;
Complex::stats();

e TU prog.cc has references to items in iostream and cmath.

e As well, there are many references within the TU, e.g., main references Complex.

e Separate original program into two TUs in files complex.cc and prog.cc:

120 CHAPTER 2. C++

complex.cc

#include <iostream> // import

#include <cmath>

using namespace std;

struct Complex {
static int objects; // shared counter
double re, im; // implementation
Complex(double r = 0.0, double i = 0.0) { objects += 1; ...}
double abs() const { return sqrt(re « re + im = im); }
static void stats() { cout << objects << endl; }

|3

int Complex::objects; // declare

Complex operator+(Complex a, Complex b) {...}

... // other arithmetic and logical operators

ostream &operator<<(ostream &os, Complex ¢) {...}

const Complex C_1(1.0, 0.0);

TU complex.cc has references to items in iostream and cmath.

prog.cc
int main() {
Complex a(1.3), b(2., 45), ¢(-3, -4);
cout << a + b + c + C_1 << c.abs() << endl,
Complex::stats();

}

TU prog.cc has references to items in iostream and complex.cc.

e Complex interface placed into file complex.h, for inclusion (import) into TUs.

complex.h
#ifndef __COMPLEX_H__
#define __COMPLEX_H__ // protect against multiple inclusion
#include <iostream> // import
// NO ‘using namespace std”, use qualification to prevent polluting scope
struct Complex {
static int objects; // shared counter
double re, im; // implementation
Complex(double r = 0.0, double i = 0.0);
double abs() const;
static void stats();
|3
extern Complex operator+(Complex a, Complex b);
... // other arithmetic and logical operator descriptions
extern std::ostream &operator<<(std::ostream &os, Complex c);
extern const Complex C_1;
#endif / __COMPLEX_H__

e Complex implementation placed in file complex.cc.

2.24. SEPARATE COMPILATION, OBJECTS 121

complex.cc
#include "complex.h" // do not copy interface
#include <cmath> // import
using namespace std; // ok to pollute implementation scope
int Complex::objects; // defaults to 0

void Complex::stats() { cout << Complex::objects << endl; }
Complex::Complex(double r, double i) { objects += 1; ...}
double Complex::abs() const { return sqrt(re » re + im = im); }
Complex operator+(Complex a, Complex b) {

}

return Complex(a.re + b.re, a.im + b.im);

ostream &operator<<(ostream &os, Complex ¢) {

}

return os << c.re << "+" << c.im << "1";

const Complex C_1(1.0, 0.0);

e Compile TU complex.cc to generate complex.o.

$ g++ —-c complex.cc

e What variables/routines are exported from complex.o?

$ nm -C complex.o | egrep ' T | B/

C_1

Complex
Complex
Complex
Complex
Complex

:stats()

::objects
::Complex(double, double)
::Complex(double, double)
::abs() const

operator<<(std::ostream&, Complex)
operator+(Complex, Complex)

e In general, why are type names not in the .o file?

¢ To compile prog.cc, it must import complex.h

prog.cc

#include "complex.h"
#include <iostream> // included twice!
using namespace std;

int main() {
Complex a(1.3), b(2., 45), ¢(-3, -4);
cout << a + b + c + C_1 << c.abs() << endl;
Complex::stats();

}

e Why is #include <iostream> in prog.cc when it is already imported by complex.h?

e Compile TU

prog.cc to generate prog.o.

$ g++ —c prog.cc

122 CHAPTER 2. C++

e Link together TUs complex.o and prog.o to generate exec.

$ g++ prog.o complex.o -0 exec

2.25 Testing

¢ A major phase in program development is testing (> 50%).
¢ This phase often requires more time and effort than design and coding phases combined.
e Testing is not debugging.

e Testing is the process of “executing” a program with the intent of determining differences
between the specification and actual results.

o Good test is one with a high probability of finding a difference.

o Successful test is one that finds a difference.

e Debugging is the process of determining why a program does not have an intended testing
behaviour and correcting it.

e Human Testing : systematic examination of program to discover problems.
o Studies show 30—70% of logic design and coding errors can be detected in this manner.

e Machine Testing : systematic running of program using test data designed to discover prob-
lems.

o Speed up testing, occur more frequently, improve testing coverage, greater consistency
and reliability, use less people-time testing

e Three major approaches:
o Black-Box Testing : program’s design / implementation is unknown when test cases

are drawn up.

o White-Box Testing : program’s design / implementation is used to develop the test
cases.

o Gray-Box Testing : only partial knowledge of program’s design / implementation
know when test cases are drawn up.

e Start with the black-box approach and supplement with white-box tests.
¢ Black-Box Testing

o equivalence partitioning : completeness without redundancy

x partition all possible input cases into equivalence classes
x select only one representative from each class for testing

2.26. ASSERTIONS 123

*x E.g., payroll program with input HOURS

HOURS <= 40
40 < HOURS <= 45 (time and a half)
45 < HOURS (double time)

x 3 equivalence classes, plus invalid hours
* many types of invalid data = partition into equivalence classes

o boundary value : test cases below, on, and above boundary cases

* 39, 40, 41 (hours) valid cases

0, 1, 2 g
-2,-1, 0 ” invalid cases
59, 60, 61 ”

o error guessing
* surmise, through intuition and experience, what the likely errors are and then test
for them

e White-Box Testing (logic coverage)

o develop test cases to cover (exercise) important program logic paths
o try to test every decision alternative at least once

o test all combinations of decisions (often impossible due to size)

o test every routine and member for each type

o cannot test all permutations and combinations of execution

e Test Harness : a collection of software and test data configured to run a program (unit)
under varying conditions and monitor its outputs.

2.26 Assertions

e Assertions document program assumptions:

o pre-conditions — true before a computation (e.g., all values are positive),
assert(x >0 & &y >0); // before

o invariants — true across the computation (e.g., all values during the computation are
positive, because only +,*,/ operations),

X=...
assert(x > 0); // during

o post-conditions — true after the computation (e.g., all results are positive).
assert(x >0 &&y>0); / after
e Common to check for null pointer:

assert(p != nullptr);

124 CHAPTER 2. C++

e Use comma expression to add documentation to assertion message.
#include <cassert>
unsigned int stopping_distance(Car car) {
... assert(("Internal erroxr", distance > 0)); ...
}
$ a.out

a.out: test.cc:19: unsigned int stopping_distance(Car):
Assertion (" "Internal error", distance > 0)’ failed.

e Assertions in hot spot, i.e., point of high execution, can significantly increase program cost.

e Compiling a program with preprocessor variable NDEBUG defined removes all asserts.

% g++ —DNDEBUG ... # all asserts removed

¢ Therefore, never put computations needed by a program into an assertion.

assert(needed_computation(...) > 0); / may not be executed

2.27 Debugging

e Debugging is the process of determining why a program does not have an intended be-
haviour.

e Often debugging is associated with fixing a program after a failure.
e However, debugging can be applied to fixing other kinds of problems, like poor performance.

e Before using debugger tools it is important to understand what you are looking for and if
you need them.

2.27.1 Debug Print Statements

e An excellent way to debug a program is to start by inserting debug print statements (i.e., as
the program is written).

e It takes more time, but the alternative is wasting hours trying to figure out what the program
is doing.

e The two aspects of a program that you need to know are: where the program is executing
and what values it is calculating.

¢ Debug print statements show the flow of control through a program and print out intermediate
values.

e E.g., every routine should have a debug print statement at the beginning and end, as in:

2.27. DEBUGGING 125

intp(...){
// declarations
cerr << "Enter p " << parameter variables << endl;

cerr << "Exit p " << return value(s) << endl;
return r;

e Result is a high-level audit trail of where the program is executing and what values are being
passed around.

¢ Finer resolution requires more debug print statements in important control structures:

if (a>b){
cerr << "a > b" << endl;
for (...){

cerr << "x=" << x << ", y=" <<y << endl;

} else {
cerr << "a <=b" << endl;

e By examining the control paths taken and intermediate values generated, it is possible to
determine if the program is executing correctly.

e Unfortunately, debug print statements generate lots of output.

It is of the highest importance in the art of detection to be able to recognize out
of a number of facts which are incidental and which vital. (Sherlock Holmes,
The Reigate Squires)

e Gradually comment out debug statements as parts of the program begin to work to remove
clutter from the output, but do not delete them until the program works.

e When you go for help, your program should contain debug print-statements to indicate some
attempt at understanding the problem.

e Use a preprocessor macro to simplify debug prints for printing entry, intermediate, and exit
locations and data:

#define DPRT(title, expr) \
{ std:icerr << #title "\t\"" << __PRETTY_FUNCTION__ << "\" " <<\
expr << " in " << __FILE__ << " at line " << __LINE__ << std::endl; }

http://www.student.cs.uwaterloo.ca/~cs246/current/codeExamples/DPRT.h

126 CHAPTER 2. C++

#include <iostream>

#include "DPRT.h"

int test(int a, int b) {
DPRT(ENTER, "a:" <<a<< " b:" << b);
if(a<b)DPRT(a<b, "a:" <<a<<"b:" <<b);

DPRT(,a + b); // empty title
DPRT(HERE, ""); // empty expression
DPRT(EXIT, a);

return a;

}

ENTER "int test (int, int)" a:3 b:4 in test.cc at line 14

a<b "int test(int, int)" a:3 b:4 in test.cc at line 16
"int test (int, int)" 7 in test.cc at line 18

HERE "int test (int, int)" in test.cc at line 19

EXIT "int test (int, int)" 3 in test.cc at line 20

2.28 Valgrind

e Incorrect memory usage is difficult to detect, e.g., memory leak or dangling pointer (see
Section 2.13, p. 82).

Valgrind is a program that detects memory errors.

Valgrind has false positives, i.e., claim memory errors that are not errors.

Note, valgrind significantly slows program execution.

Control output from valgrind for an empty program:

int main() {

}

$ g++ —g test.cc

$ valgrind ./a.out

==61795== Memcheck, a memory error detector

==61795== Copyright (C) 2002-2011, and GNU GPL'd, by Julian Seward et al.
==61795== Using Valgrind-3.7.0 and LibVEX; rerun with -h for copyright info
==61795== Command: ./a.out

==61795==

==61795== HEAP SUMMARY:

==61795== in use at exit: 0 bytes in 0 blocks

==61795== total heap usage: 0 allocs, 0 frees, 0 bytes allocated
==61795==

==61795== All heap blocks were freed —— no leaks are possible
==61795==

==61795== For counts of detected and suppressed errors, rerun with: -v
==61795== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 2 from 2)

e Output states:

o HEAP SUMMARY:

2.28. VALGRIND

* how much heap memory was in use when the program exited
* how much heap memory was allocated in total.

o Note, allocs = frees does not = no memory leaks.
o Must see “All heap blocks were freed — no leaks are possible”.
¢ Control output from valgrind for an allocation:
int main() {
int *p = new int;

delete p;
}

$ valgrind ./a.out

—-61570== HEAP SUMMARY:

==61570== in use at exit: 72,704 bytes in 1 blocks
==61570== total heap usage: 2 allocs, 1 frees, 72,708 bytes allocated
==61570==

==61570== LEAK SUMMARY:
==61570== definitely lost: 0 bytes in 0 blocks

==61570== indirectly lost: 0 bytes in 0 blocks
==61570== possibly lost: 0 bytes in 0 blocks
==61570== still reachable: 72,704 bytes in 1 blocks

==61570== suppressed: 0 bytes in 0 blocks

e Only I dynamic allocation, but 2 reported as C+ runtime does not free all memory.
e LEAK SUMMARY:

o Non-zero values for definitely, indirectly, and possibly lost = memory leak.

o Non-zero value for still reachable = memory leak from C+ runtime (ignore).

¢ Introduce memory leak:

1 int main() {

2 struct Foo { char c1, c2; };

3 Foo *p = new Foo;

4 p = new Foo; // forgot to free previous storage

}
==45326== HEAP SUMMARY:

==45326== in use at exit: 72,708 bytes in 3 blocks

==45326== total heap usage: 3 allocs, 0 frees, 72,708 bytes allocated
==45326==

==45326== LEAK SUMMARY:

==45326== definitely lost: 4 bytes in 2 blocks

==45326== indirectly lost: 0 bytes in 0 blocks

==45326== possibly lost: 0 bytes in 0 blocks

==45326== still reachable: 72,704 bytes in 1 blocks

==45326== suppressed: 0 bytes in 0 blocks

==45326== Rerun with ——leak—check=full to see details of leaked memory

127

128 CHAPTER 2. C++

e What happened?

o Second allocation overwrites first without a free.
o Second allocation is not freed.

o 2 x 2 byte unfreed, each in a different allocation block.

¢ Add --leak-check=full flag:
$ valgrind ——leak—check=full ./a.out # flag must precede filename
-=-=-19639== 2 bytes in 1 blocks are definitely lost in loss record 1 of 2

==19639== at 0x4C2B1C7: operator new(unsigned long) (in /ust/lib/valgrind/...)
==19639== by 0x400659: main (test.cc:3)

e Introduce memory errors:

1 #include <iostream>

2 using namespace std;

3 int main() {

4 int » x;

5 cout << x << endl; // uninitialized read

6 X = new int[10];

7 X[0] = x[10]; // subscript error, invalid read

8 x[10] = 10; // subscript error, invalid write

9 delete[] x;

10 delete[] x; // invalid free

11 X[0] = 3; // dangling pointer, invalid write
}

==870== Use of uninitialised value of size 8 ... by main (test2.cc:5)

==870== Conditional jump or move depends on uninitialised value(s) ... by main (test2.cc:5)
==870== Invalid read of size 4 ... at main (test2.cc:7) ... by main (test2.cc:6)

==870== Invalid write of size 4 ... at main (test2.cc:8) ... by main (test2.cc:6)

==870== Invalid free() / delete / delete[] / realloc()

==870== at 0x4C2A09C: operator delete[](void+) (in /usr/lib/valgrind/...)
==870== by 0x40091C: main (test2.cc:10)

==870== Address 0x5a91c80 is 0 bytes inside a block of size 40 free’d
==870== at 0x4C2A09C: operator delete[](void+) (in /usr/lib/valgrind/...)
==870== by 0x400909: main (test2.cc:9)

==870== Invalid write of size 4 ... at main (test2.cc:11) ... by main (test2.cc:9)
==870== ERROR SUMMARY: 7 errors from 7 contexts (suppressed: 2 from 2)

e What happened? (output trimmed to focus on errors)

o valgrind identifies all memory errors, giving the line number where each error occurred.
o For Invalid free()

x first 3 lines indicate the delete on line 10 is already freed.

* next 3 lines indicate the memory previously freed on line 9.

2.29. RANDOM NUMBERS 129

2.29 Random Numbers

e Random numbers are values generated independently, i.e., new values do not depend on
previous values (independent trials).

e E.g., lottery numbers, suit/value of shuffled cards, value of rolled dice, coin flipping.

e While programmers spend much time ensuring computed values are not random, random
values are useful:

o gambling, simulation, cryptography, games, etc.
¢ Random-number generator is an algorithm computing independent values.

e If algorithm uses deterministic computation (predictable sequence), it generates pseudo
random-numbers versus “true” random numbers.

e All pseudo random-number generators (PRNG) involve some technique that scrambles
the bits of a value, e.g., multiplicative recurrence:

seed_ = 36969 * (seed_ & 65535) + (seed_ >> 16); // scramble bits

e Multiplication of large values adds new least-significant bits and drops most-significant bits.

bits 63-32 | bits 31-0
0 3e8e36

5f | 718c25el

ad3e | 7Tb5fldbe
bc3b | ac69ffl19
1070f | 2d258dcé6

¢ By dropping bits 63-32, bits 31-0 become scrambled after each multiply.

e E.g., struct PRNG generates a fixed sequence of LARGE random values that repeats after
232 values (but might repeat earlier).”

struct PRNG {
uint32_t seed_; // same results on 32/64-bit architectures

PRNG(uint32_t s = 362436069) { / default seed

seed_ = s; // set seed

}

uint32_t seed() { // read seed
return seed_;

void seed(uint32_t s) { // reset seed
seed_ = s; // set seed

}

Zhttp://www.bobwheeler.com/statistics/Password/MarsagliaPost. txt

http://www.student.cs.uwaterloo.ca/~cs246/current/codeExamples/PRNG.h
http://www.bobwheeler.com/statistics/Password/MarsagliaPost.txt

130 CHAPTER 2. C++

uint32_t operator()(){ // [O,UINT_MAX]
seed_ = 36969+(seed_ & 65535)+(seed_ >> 16); // scramble bits
return seed_;

}
uint32_t operator()(uint32_t u) { /7 [o,u]

return operator()() % (u + 1); // call operator()()
}

uint32_t operator()(uint32_t I, uint32_t u) { 7/ [l,u]
return operator()(u - 1) + |; // call operator()(uint32_t)
}

1

Problem:

o generate next random number via routine call prng(5) not member call prng.get(5)

o but routine cannot retain state (seed_) between calls (), so must use an object.

Use function-call operator member, with name (), (functor), allowing object to behave like
a routine but retain state between calls in object.

PRNG prng; // often create single generator for entire program
prng(); // [O,UINT_MAX], prng.operator()()
prng(5); // [0,5], prng.operator()(5)

prng(5, 10); / [5,10], prng.operator()(5, 10)

Scaled large values from prng using modulus, e.g., random number between 5-21:

for (inti=0;i<10;i+=1) {
cout << prng() % 17 + 5 << endl; // values 0-16 + 5 = 5-21
cout << prng(16) + 5 << endl;
cout << prng(5, 21) << endl;

}

Initializing PRNG with external “seed” generates different sequence:

PRNG prng(getpid()); / process id of program (better)
prng.seed(time()); // current time

#include <cstdlib> provides C random routines srand and rand.
srand(getpid()); // seed random genrator
r = rand(); // obtain next random value

2.30 Encapsulation

¢ Encapsulation hides implementation to support abstraction (access control).

e Access control applies to types NOT objects, i.e., all objects of the same type have identical
levels of encapsulation.

e Abstraction and encapsulation are neither essential nor required to develop software.

2.30. ENCAPSULATION 131

e E.g., programmers could follow a convention of not directly accessing the implementation.
e However, relying on programmers to follow conventions is dangerous.

e Abstract data-type (ADT) is a user-defined type practicing abstraction and encapsulation.
e Encapsulation is provided by a combination of C and C+ features.

e C features work largely among source files, and are indirectly tied into separate compilation
(see Section 2.23, p. 115).

e C+ features work both within and among source files.

e C+ provides 3 levels of access control for object types:

| Java | CH

class Foo { struct Foo {
private ... private: // within and friends
// private members
protected ... protected: // within, friends, inherited
e // protected members
public ... public: // within, friends, inherited, users
// public members

b b

e C+ groups members with the same encapsulation, i.e., all members after a label, private,
protected or public, have that visibility.

e Visibility labels can occur in any order and multiple times in an object type.

¢ Encapsulation supports abstraction by making implementation members private and inter-
face members public.

* Note, private/protected members are still visible to programmer but inaccessible (see page 133
for invisible implementation.

struct Complex {
private:
double re, im; // cannot access but still visible
public:
// interface routines
¥

e struct has an implicit public inserted at beginning, i.e., by default all members are public.

e class has an implicit private inserted at beginning, i.e., by default all members are private.

132 CHAPTER 2. C++

struct S { class C {
// public: // private:
int z; int x;
private: protected:
int x; int y;
protected: public:
int y; int z;
b b

e Use encapsulation to preclude object copying by hiding copy constructor and assignment
operator:

class Lock {
Lock(const Lock &); // definitions not required
Lock &operator=(Lock &);
public:
Lock() {...}

|3

void rtn(Lock f) {...}

Lock x, y;

rtn(x); // disallowed, no copy constructor for pass by value
X = y; // disallowed, no assignment operator for assignment

¢ Prevent object forgery (lock, boarding-pass, receipt) or copying that does not make sense
(file, database).

¢ Encapsulation introduces problems when factoring for modularization, e.g., previously ac-
cessible data becomes inaccessible.

class Cartesian { / implementation type
double re, im;

b

class Complex { class Complex {

double re, im; Cartesian impl;

public: public:

Complex operator+(Complex c);

b
b Complex operator+(Complex a, Complex b);
ostream &operator<<(ostream &os, ostream &operator<<(ostream &os,

Complex c); Complex c);

6 9

¢ Implementation is factored into a new type Cartesian, “+” operator is factored into a routine
outside and output “<<” operator must be outside (see Section 2.22.3.2, p. 104).

e Both Complex and “+” operator need to access Cartesian implementation, i.e., re and im.

¢ Creating get and set interface members for Cartesian provides no advantage over full access.

2.30. ENCAPSULATION 133

e C+ provides a mechanism to state that an outside type/routine is allowed access to its im-
plementation, called friendship.

class Complex; // forward

class Cartesian { // implementation type
friend Complex operator+(Complex a, Complex b);
friend ostream &operator<<(ostream &os, Complex ¢);
friend class Complex;
double re, im;

|3

class Complex {
friend Complex operator+(Complex a, Complex b);
friend ostream &operator<<(ostream &os, Complex ¢);
Cartesian impl;

public:

b

Complex operator+(Complex a, Complex b) {
return Complex(a.impl.re + b.impl.re, a.impl.im + b.impl.im);

}

ostream &operator<<(ostream &os, Complex ¢) {
return os << c.impl.re << "+" << c.impl.im << "i";
}

e Cartesian makes re/im accessible to friends, and Complex makes impl accessible to friends.

e Alternative design is to nest the implementation type in Complex and remove encapsulation
(use struct).

class Complex {
friend Complex operator+(Complex a, Complex b);
friend ostream &operator<<(ostream &os, Complex ¢);
class Cartesian { / implementation type
double re, im;
} impl;
public:
Complex(double r = 0.0, double i = 0.0) {
impl.re = r; impl.im = i;
}

1
e Complex makes Cartesian, re, im and impl accessible to friends.

¢ Note, .h file encapsulates implementation but implementation is still visible.

¢ To completely hide the implementation requires a (more expensive) reference, called bridge
or pimpl pattern:

134 CHAPTER 2. C++

Pimple Pattern
Complex Complex Compleximpl
impl impl)
re, im re, 1m
~ visible | _invisible
implementation implementation

complex.h
#ifndef __COMPLEX_H__
#define __COMPLEX_H__ // protect against multiple inclusion
#include <iostream> // import
// NO ‘using namespace std”, use qualification to prevent polluting scope
class Complex {
friend Complex operator+(Complex a, Complex b);
friend std::ostream &operator<<(std::ostream &os, Complex ¢);

static int objects; // shared counter

struct Compleximpl; // hidden implementation, nested class

Compleximpl &impl; // indirection to implementation
public:

Complex(double r = 0.0, double i = 0.0);
Complex(const Complex &c); // copy constructor
~Complex(); // destructor
Complex &operator=(const Complex &c); / assignment operator
double abs() const;
static void stats();
|3
extern Complex operator+(Complex a, Complex b);
extern std::ostream &operator<<(std::ostream &os, Complex c);
extern const Complex C_1;
#endif / __COMPLEX_H__

complex.cc
#include "complex.h" // do not copy interface
#include <cmath> // import
using namespace std; // ok to pollute implementation scope
int Complex::objects; // defaults to 0

struct Complex::Compleximpl { double re, im; }; / implementation
Complex::Complex(double r, double i) : impl(xnew Compleximpl) {
objects += 1; impl.re = r; impl.im = i;

Complex::Complex(const Complex &c) : impl(xnew Compleximpl) {
objects += 1; impl.re = c.impl.re; impl.im = c.impl.im;
}

Complex::~Complex() { delete &impl; }

Complex &Complex::operator=(const Complex &c) {
impl.re = c.impl.re; impl.im = c.impl.im; return sthis;

}

2.31. DECLARATION BEFORE USE, OBJECTS 135

double Complex::abs() {return sqgrt(impl.re = impl.re + impl.im = impl.im);}
void Complex::stats() { cout << Complex::objects << endl; }
Complex operator+(Complex a, Complex b) {
return Complex(a.impl.re + b.impl.re, a.impl.im + b.impl.im);
}

ostream &operator<<(ostream &os, Complex ¢) {
return os << c.impl.re << "+" << c.impl.im << "i";
}

e A copy constructor and assignment operator are used because complex objects now contain
a reference pointer to the implementation (see page 111).

¢ To hide global variables/routines (but NOT class members) in TU, qualify with static.

complex.cc
static int Complex::objects; // not exported
Complex::Complex(double r, double i) : impl(xnew ComplexImpl) {
objects += 1; impl.re = r; impl.im = i;

}

o here static means linkage NOT storage allocation (see Section 2.22.7, p. 114).

¢ Alternatively, place variables/routines in an unnamed namespace.

complex.cc
namespace {
int Complex::objects; // not exported
}
// equivalent to
namespace UNIQUE {} // compiler generates unique name

using namespace UNIQUE; // make contents visible in TU
namespace UNIQUE { // add items local to TU

}

e Encapsulation is provided by giving a user access to:

o include file(s) (.h) and
o compiled source file(s) (.0),

o but not implementation in the source file(s) (.cc).

2.31 Declaration Before Use, Objects

e Like Java, CH does not always require DBU within a type:

136

CHAPTER 2. C++

| Java | CH+
void g() {} / not selected by call in T::f

class T { struct T {
void f() { ¢ = Colour.R; g(); } void f() {c = R; g();} ~/c, R, g not DBU
void g() { ¢ = Colour.G; (); } void g() { ¢ =G; f(); } # ¢, G not DBU
Colour c; enum Colour { R, G, B }; / type must be DBU
enum Colour { R, G, B }; Colour c;

I |3

Unlike Java, C+ requires a forward declaration for mutually-recursive declarations among
types:

| Java | C+ |
class T1 { struct T1 {
T2 t2; T2 t2; // DBU failure, T2 size?
T1() { 2 = new T2(); }
|3 I
class T2 { struct T2 {
T1 t1; T1 t1;
T2() { t1 = new T1(); }
I3 g
T1 t1 = new T1(); T1 t1;

Caution: these types cause infinite expansion as there is no base case.

Java version compiles because t1/t2 are references not objects, and Java can look ahead at
T2.

C+ version disallowed because DBU on T2 means it does not know the size of T2.

An object declaration and usage requires the object’s size and members so storage can be
allocated, initialized, and usages type-checked.

Solve using Java approach: break definition cycle using a forward declaration and pointer.
Java | CH
struct T2; // forward
class T1 { struct T1 {
T2 12; T2 &t2; // pointer, break cycle
T1() { 12 = new T2(); } T1() : t2(*new T2) {} // DBU failure, size?
5 %
class T2 { struct T2 {
T1 t1; T1 t1;
T2() {t1 = new T1(); } || };
b

Forward declaration of T2 allows the declaration of variable T1::t2.

Note, a forward type declaration only introduces the name of a type.

2.32. INHERITANCE 137

e Given just a type name, only pointer/reference declarations to the type are possible, which
allocate storage for an address versus an object.

e CH’s solution still does not work as the constructor cannot use type T2.

e Use forward declaration and syntactic trick to move member definition after both types are

defined:
struct T2; // forward
struct T1 {
T2 &t2; // pointer, break cycle
T1(); // forward declaration
|3
struct T2 {

T1 t1;

I
T1::T1() : t2(*new T2) {} / can now see type T2

e Use of qualified name T1::T1 allows a member to be logically declared in T1 but physically
located later (see Section 2.24, p. 119).

2.32 Inheritance

¢ Object-oriented languages provide inheritance for writing reusable program-components.

| Java | CH |

class Base { ... } struct Base { ... }
class Derived extends Base { ... } || struct Derived : public Base { ... };

¢ Inheritance has two orthogonal sharing concepts: implementation and type.

o Implementation inheritance provides reuse of code inside an object type.

o Type inheritance provides reuse outside the object type by allowing existing code to
access the base type.

2.32.1 Implementation Inheritance

¢ Implementation inheritance reuses program components by composing a new object’s im-
plementation from an existing object, taking advantage of previously written and tested code.

e Substantially reduces the time to generate and debug a new object type.

¢ One way to understand implementation inheritance is to model it via composition:

138 CHAPTER 2. C++

| Composition Inheritance |

struct Engine { / Base struct Engine { / Base
int cyls; int cyls;
intr(...){...} intr(...){...}
Engine() { ... } Engine() { ... }

I I

struct Car { // Derived struct Car : public Engine { // implicit
Engine e; // explicit composition // composition
ints(...) {ecyls=4;er(..); ...} ints(...) {cyls=4;r(...); ...}
Car() { ...} Car() { ...}

b vw; b vw;

vw.e.cyls = 6; / composition reference | vw.cyls = 3; // direct reference

vw.e.r(...); / composition reference vw.r(...); // direct reference

vw.s(...); // direct reference vw.s(...); / direct reference

e Composition explicitly creates object member, e, to aid in implementation.

o A Car “has-a” Engine.

o A Caris not an Engine nor is an Engine a Car, i.e., they are not logically interchangable.
¢ Inheritance, “public Engine” clause, implicitly:

o creates an anonymous base-class object-member,
o opens the scope of anonymous member so its members are accessible without qualifi-
cation, both inside and outside the inheriting object type.

e E.g., Car declaration creates:

o invisible Engine object in Car object, like composition,

o allows direct access to variables Engine::i and Engine::r in Car::s.

¢ Constructors and destructors must be invoked for all implicitly declared objects in inheri-
tance hierarchy as for an explicit member in composition.

Engine b; b.Engine(); / implicit, hidden declaration
Car d; implicitly Car d; d.Car();

rewritten as e _ .
d.~Car(); b.~Engine(); // reverse order of construction

e If base type has members with the same name as derived type, it works like nested blocks:
inner-scope name overrides outer-scope name (see Section 2.5.2, p. 42).

e Still possible to access outer-scope names using “::” qualification (see Section 2.14, p. 85) to
specify the particular nesting level.

2.32. INHERITANCE

139

| Java

C+

class Base1l {
int i;

class Base2 extends Base1l {
int i;

class Derived extends Base2 {
int i;
void s() {
inti =3;
this.i = 3;
((Base2)this).i = 3;
((Base1)this).i = 3;

}

// super.i

struct Basel {
int i;
b

struct Base?2 : public Base1 {
int i; // overrides Base1::i
1

struct Derived : public Base2 {
int i; // overrides BaseZ2::i
void r() {
inti =3; // overrides Derived::i
Derived::i = 3; // this.i
Base2::i = 3;
Base2::Base1l::i = 3; / or Base1::i

e Friendship is not inherited.

class C {
friend class Base;

I
class Base {
// access C's private members

b

class Derived : public Base {
// not friend of C

b

e Unfortunately, having to inherit all of the members is not always desirable; some members

may be inappropriate for the new type (e.g, large array).

¢ As a result, both the inherited and inheriting object must be very similar to have so much

common code.

2.32.2 Type Inheritance

¢ Type inheritance establishes an “is-a” relationship among types.

class Employee {
... // personal info
I

class FullTime : public Employee {
... // wage & benefits
b

class PartTime : public Employee {
... // wage
}

o A FullTime “is-a” Employee; a PartTime “is-a”” Employee.

140

CHAPTER 2. C++

o A FullTime and PartTime are logically interchangable with an Employee.

o A FullTime and PartTime are not logically interchangable.

e Type inheritance extends name equivalence (see Section 2.12, p. 74) to allow routines to

handle multiple types, called polymorphism, e.g.:

struct Foo { struct Bar {
int i; int i;

double d; double d;

| } b

void r(Foo f) { ...}

r(f); / allowed

r(b); // disallowed, name equivalence

Since types Foo and Bar are structurally equivalent, instances of either type should work as
arguments to routine r (see Section 2.15, p. 86).

Even if type Bar has more members at the end, routine r only accesses the common ones at
the beginning as its parameter is type Foo.

However, name equivalence precludes the call r(b).

Type inheritance relaxes name equivalence by aliasing the derived name with its base-type
names.

struct Foo { struct Bar : public Foo { // inheritance
int i; // remove Foo members
double d;

P } b;

void r(Foo f) { ...}

r(f); // valid call, derived name matches

r(b); // valid call because of inheritance, base name matches

Foo Bar

inti
double d

Foo

e E.g., create a new type Mycomplex that counts the number of times abs is called for each

Mycomplex object.

¢ Use both implementation and type inheritance to simplify building type Mycomplex:

2.32. INHERITANCE 141

struct Mycomplex : public Complex {
int cntCalls; // add
Mycomplex() : cntCalls(0) {} // add
double abs() { // override, reuse complex’ s abs routine

cntCalls += 1;
return Complex::abs();

}
int calls() { return cntCalls; } // add

Derived type Mycomplex uses the implementation of the base type Complex, adds new mem-
bers, and overrides abs to count each call.

Why is the qualification Complex:: necessary in Mycomplex::abs?

Allows reuse of Complex’s addition and output operation for Mycomplex values, because of
the relaxed name equivalence provided by type inheritance between argument and parameter.

Redeclare Complex variables to Mycomplex to get new abs, and member calls returns the
current number of calls to abs for any Mycomplex object.

Two significant problems with type inheritance.

I.

o

Complex routine operator+ is used to add the Mycomplex values because of the
relaxed name equivalence provided by type inheritance:

int main() {

Mycomplex Xx;

X =X+ X; // disallowed
}

However, result type from operator+ is Complex, not Mycomplex.

Assignment of a complex (base type) to Mycomplex (derived type) disallowed be-
cause the Complex value is missing the cntCalls member!

Hence, a Mycomplex can mimic a Complex but not vice versa.
This fundamental problem of type inheritance is called contra-variance.

C#+ provides various solutions, all of which have problems and are beyond this
course.

void r(Complex &c) {

}

c.abs(); // calls Complex::abs not Mycomplex::abs
int main() {

Mycomplex x;

x.abs(); // direct call of abs

r(x); // indirect call of abs

}

cout << "x:" << x.calls() << endl;

o While there are two calls to abs on object x, only one is counted! (see Sec-

tion 2.32.6, p. 144)

142 CHAPTER 2. C++

¢ public inheritance means both implementation and type inheritance.
e private inheritance means only implementation inheritance.
class bus : private car { ...
Use implementation from car, but bus is not a car.
¢ No direct mechanism in C+ for type inheritance without implementation inheritance.
2.32.3 Constructor/Destructor
e Constructors are executed top-down, from base to most derived type.

e Mandated by scope rules, which allow a derived-type constructor to use a base type’s vari-
ables so the base type must be initialized first.

e Destructors are executed bottom-up, from most derived to base type.

e Mandated by the scope rules, which allow a derived-type destructor to use a base type’s
variables so the base type must be uninitialized last.

e To pass arguments to other constructors, use same syntax as for initializing const members.

| Java | CH

class Base {
Base(inti) {...}
|8 |3

struct Base {
Base(inti) { ...}

class Derived extends Base {
Derived() { super(3); ...

1

}

Derived(int i) { super(i); ..

-}

struct Derived : public Base {
Derived() : Base(3) { ...}
Derived(int i) : Base(i) {...}
|3

2.32.4 Copy Constructor / Assignment

e Each aggregate type has a default/copy constructor, assignment operator, and destructor
(see page 109), so these members cannot be inherited as they exist in the derived type.

e Otherwise, copy-constructor/assignment work like composition (see Section 2.22.5, p. 108).

struct B {

B() { cout << "B() ";}

B(const B &c) { cout << "B(&) ";}

B &operator=(const B &rhs) { cout << "B=";}
I§
struct D : public B {

int i; // basic type, bitwise
|3
int main() {
D i; cout << endl; // B's default constructor
D d =i; cout << endl; // D’s default copy-constructor
d=1i; cout<<endl; /D's default assignment

2.32. INHERITANCE 143

outputs the following:

B() /D i
B(&) /Dd=i
B= /Jd =i

e D’s default copy-constructor/assignment does memberwise copy of each subobject.

e If D defines a copy-constructor/assignment, it overrides that in any subobject.

struct D : public B {
... // same declarations
D() { cout << "D() "; }
D(const D &) : B(¢), i(c.i) { cout << "D(&) ";}
D &operator=(const D &rhs) {
i = rhs.i; (B &)sthis = rhs;
cout << "D=";
return =this;

}
1

outputs the following:

B)D() /Di
B(& D(&) /Dd=i
B= D= /d =i

Must copy each subobject to get same output. Note coercion!

2.32.5 Overloading

¢ Overloading a member routine in a derived class overrides all overloaded routines in the base
class with the same name.

class Base {
public:
void mem(int i) {}
void mem(char ¢) {}
b
class Derived : public Base {
public:
void mem() {} // overrides both versions of mem in base class
I

¢ Hidden base-class members can still be accessed:

o Provide explicit wrapper members for each hidden one.

class Derived : public Base {
public:
void mem() {}
void mem(int i) { Base::mem(i); }
void mem(char c) { Base::mem(¢); }

b

144

o Collectively provide implicit members for all of them.

class Derived : public Base {

public:

void mem() {}

using Base::mem; // all base mem routines visible

b

o Use explicit qualification to call members (violates abstraction).

Derived d;

d.Base::mem(3);
d.Base::mem("a’);

d.mem();

2.32.6 Virtual Routine

CHAPTER 2. C++

e When a member is called, it is usually obvious which one is invoked even with overriding:

struct Base {

1

void r() { ..

struct Derived :
void r() { ..

1

Base b;
b.r();
Derived d;
d.r();

-}

public Base {

. '} // override Base::r

// call Base::r

// call Derived::r

e However, not obvious for arguments/parameters and pointers/references:

void s(Base &b) { b.r(); } // Base::r or Derived::r ?
// inheritance allows call: Base::r or Derived:ir ?
Base &bp = d; // assignment allowed because of inheritance

s(d);

bp.r();

// Base::r or Derived::r ?

e Inheritance masks actual object type, but expectation is both calls should invoke Derived::r

as argument b and reference bp point at an object of type Derived.

e If variable d is replaced with b, expectation is the calls should invoke Base::r.

Base &bp =bord

b
void r()

d

void r()

inti
void r()

¢ To invoke a routine defined in a referenced object, qualify member routine with virtual.

¢ To invoke a routine defined by the type of a pointer/reference, do not qualify member routine

with virtual.

2.32.

INHERITANCE 145

C+ uses non-virtual as the default because it is more efficient.
Java always uses virtual for all calls to objects.

Once a base type qualifies a member as virtual, it is virtual in all derived types regardless
of the derived type’s qualification for that member.

Programmer may want to access members in Base even if the actual object is of type Derived,
which is possible because Derived contains a Base.

C+ provides mechanism to override the default at the call site.

| Java | CH+

class Base { struct Base {
public void f() {} // virtual void f() {} // non-virtual
public void g() {} / virtual void g() {} // non-virtual
public void h() {} / virtual virtual void h() {} / virtual

|3

class Derived extends Base { || struct Derived : public Base {
public void g() {} / virtual void g() {}; // replace, non-virtual
public void h() {} // virtual void h() {}; // replace, virtual
public void e() {} / virtual void ¢() {}; // extension, non-virtual

} 1

bp.f(); // Base.f bp.f(); // Base::f, pointer type
((Base)bp).g(); // Derived.g bp.g(); // Base::g, pointer type
bp.g(); // Derived.g ((Derived &)bp).g(); // Derived::g, pointer type
((Base)bp).h(); // Derived.h bp.Base::h(); // Base::h, explicit selection
bp.h(); // Derived.h bp.h(); // Derived::h, object type

// cannot access “e” through bp

final Base bp = new Derived(); || Base &bp = *new Derived(); // polymorphic assignment

Java casting does not provide access to base-type’s member routines.

Virtual members are only necessary to access derived members through a base-type refer-
ence or pointer.

If a type is not involved in inheritance (final class in Java), virtual members are unnecessary
so use more efficient call to its members.

C+ virtual members are qualified in base type as opposed to derived type.

Hence, G+ requires the base-type definer to presuppose how derived definers might want
the call default to work.

Good practice for inheritable types is to make all routine members virtual.

Any type with virtual members needs to make the destructor virtual (even if empty) so the
most derived destructor is called through a base-type pointer/reference.

146 CHAPTER 2. C++

e Virtual routines are normally implemented by routine pointers.

class Base {
int x, y; // data members
virtual void m1(...); // routine members

virtual void m2(...);

1

e Maybe implemented in a number of ways:

m1 — 1 mil — 1= mi
m2 — 1= m2 X — T m2
X X y Virtual Routine
y y Table
copy direct routine pointer | indirect routine pointer

2.32.7 Downcast
¢ Type inheritance can mask the actual type of an object through a pointer/reference (see Sec-

tion 2.32.2, p. 139).

¢ A downcast dynamically determines the actual type of an object pointed to by a polymorphic
pointer/reference.

e The Java operator instanceof and the C+ dynamic_cast operator perform a dynamic check
of the object addressed by a pointer/reference (not coercion):

| Java | CH+ |
Base bp = new Derived(); Base *bp = new Derived;
Derived =dp;
if (bp instanceof Derived) | dp = dynamic_cast<Derived «>(bp);
((Derived)bp).rtn(); if (dp !=0) { /0 => not Derived
dp->rtn(); // only in Derived

e To use dynamic_cast on a type, the type must have at least one virtual member.

2.32.8 Slicing

e Polymorphic copy or assignment can result in object truncation, called slicing.

2.32. INHERITANCE 147

struct B {
int i;
|3

struct D : public B {

int j;
1
void (B b) {...}
int main() {
B b;
D d;
f(d); // truncate D to B
b=d; // truncate D to B

}

e Avoid polymorphic value copy/assignment; use polymorphic pointers.

2.32.9 Protected Members

¢ Inherited object types can access and modify public and protected members allowing access
to some of an object’s implementation.

class Base {
private:
int x;
protected:
int y;
public:
int z;
b

class Derived : public Base {
public:
Derived() { x; y; z; }; / x disallowed; y, z allowed
b

int main() {
Derived d;
d.x; d.y; d.z; // x, y disallowed; z allowed

}
2.32.10 Abstract Class

e Abstract class combines type and implementation inheritance solely for structuring new
types.

e Contains at least one pure virtual member that must be implemented by derived class.

class Shape {
int colour;
public:
virtual void move(int x, int y) = 0; / pure virtual member
|3

e Strange initialization to 0 means pure virtual member.

148

CHAPTER 2. C++

¢ Define type hierarchy (taxonomy) of abstract classes moving common data and operations

as high as possible in the hierarchy.

Java | CH+
abstract class Shape { class Shape {
protected int colour = White; protected: int colour;
public public:
Shape() { colour = White; }
abstract void move(int x, int y); virtual void move(int x, int y) = 0;

1

abstract class Polygon extends Shape { || class Polygon : public Shape {

protected int edges; protected: int edges;
public abstract int sides(); public: virtual int sides() = 0;

} b

class Rectangle extends Polygon { class Rectangle : public Polygon {
protected int x1, y1, x2, y2; protected: int x1, y1, x2, y2;

public:

public Rectangle(...) {...} Rectangle(...) {...} / init corners
public void move(int x, inty) {...} void move(int x, inty) {...}
public int sides() { return 4; } int sides() { return 4; }

} b

class Square extends Rectangle { struct Square : public Rectangle {
// check square // check square
Square(...) { super(...); ...} Square(...) : Rectangle(...) {...}

} 1

Use public/protected to define interface and implementation access for derived classes.

Provide (pure) virtual member to allow overriding and force implementation by derived
class.

Provide default variable initialization and implementation for virtual routine (non-abstract)
to simplify derived class.

Provide non-virtual routine to force specific implementation; derived class should not over-
ride these routines.

Concrete class inherits from one or more abstract classes defining all pure virtual members,
1.e., can be instantiated.

Cannot instantiate abstract class, but can declare pointer/reference to it.

Pointer/reference used to write polymorphic data structures and routines:

void move3D(Shape &s) { ... s.move(...); ... }
Polygon *polys[10] = { new Rectangle(), new Square(), ... };
for (unsigned int i = 0;i < 10;i +=1) {
cout << polysli]->sides() << endl; / polymorphism
move3D(=polys[i]); /# polymorphism

2.33.

TEMPLATE 149

To maximize polymorphism, write code to the highest level of abstraction®, i.e. use Shape
over Polygon, use Polygon over Rectangle, etc.

2.33 Template

Inheritance provides reuse for types organized into a hierarchy that extends name equiva-
lence.

Template provides alternate kind of reuse with no type hierarchy and types are not equiva-
lent.

E.g., overloading (see Section 2.19, p. 93), where there is identical code but different types:

int max(inta,intb) {returna>b ? a:b;}
double max(double a, double b) { return a > b ? a: b; }

Template routine eliminates duplicate code by using types as compile-time parameters:

template<typename T> T max(Ta, Tb){returna>b ?a:b;}

template introduces type parameter T used to declare return and parameter types.

Template routine is called with value for T, and compiler constructs a routine with this type.

> int

cout << max<int>(1,3); / T-
1); /' T —> double

cout << max<double>(1.1, 3.5

In many cases, the compiler can infer type T from argument(s):

, 3); /T ->int

cout << max()
1, 3.5); /' T -> double

1

cout << max(1

Inferred type must supply all operations used within the template routine.
o e.g., types used with template routine max must supply operator>.

Template type prevents duplicating code that manipulates different types.

E.g., collection data-structures (e.g., stack), have common code to manipulate data structure,
but type stored in collection varies:

3 Also called “program to an interface not an implementation”, which does not indicate the highest level of abstrac-

tion.

150 CHAPTER 2. C++

template<typename T=int, unsigned int N=10> // default type/value

struct Stack { // NO ERROR CHECKING
T elems[N]; /- maximum N elements
unsigned int size; // position of free element after top

Stack() { size = 0; }
T top() { return elems[size - 1]; }
void push(T e) { elems[size] = e; size += 1; }
T pop() { size —= 1; return elems[size]; }

|3

template<typename T, unsigned int N> // print stack

ostream &operator<<(ostream &os, const Stack<T, N> &stk) {

for (inti=0;i< stksize; i += 1) os << stk.elems[i] << " ";
return os;

e Type parameter, T, specifies the element type of array elems, and return and parameter types
of the member routines.

¢ Integer parameter, N, denotes the maximum stack size.

e Unlike template routines, type cannot be inferred by compiler because type is created at
declaration before any member calls.

Stack<> si; // stack of int, 10

si.push(3); //si:3

si.push(4); //si:34

si.push(5); /si:345

cout << si.top() << endl; /)

int i = si.pop(); /i:bh si:34
Stack<double> sd; // stack of double, 10
sd.push(5.1); /sd 5.1

sd.push(6.2); /sd: 51862

cout << sd << endl; /' 5.162

double d = sd.pop(); /d:6.2 sd:5.1
Stack<Stack<int>,20> ssi; // stack of (stack of int, 10), 20
ssi.push(si); // ssi (3 4)

ssi.push(si); // ssi i (34)(34)
ssi.push(si); //ssi:(834)(34)(34)
cout << ssi << endl; /34 34 34

si = ssi.pop(); //si:34,ssi:(34)(34)

Why does cout << ssi << endl have 2 spaces between the stacks?

e Specified type must supply all operations used within the template type.

e Compiler requires a template definition for each usage so both the interface and imple-
mentation of a template must be in a .h file, precluding some forms of encapsulation and

separate compilation.

e (C+03 requires space between the two ending chevrons or >> is parsed as operator>>.

2.33. TEMPLATE 151

template<typename T> struct Foo { ... };
Foo<Stack<int>> foo; // syntax error (fixed C++11)
Foo<Stack<int> > foo; // space between chevrons

2.33.1 Standard Library

e C+ Standard Library is a collection of (template) classes and routines providing: I/O, strings,
data structures, and algorithms (sorting/searching).

e Data structures are called containers: vector, map, list (stack, queue, deque).

¢ In general, nodes of a data structure are either in a container or pointed-to from the container.

container | node | node | node | node | ® * *

container LUK

node| |node| |node| |node| © * e

¢ To copy a node into a container requires its type have a default and/or copy constructor so
instances can be created without constructor arguments.

e Standard library containers use copying = node type must have default constructor.
¢ All containers are dynamic sized so nodes are allocated in heap (arrays can be on stack).

e To provide encapsulation (see Section 2.30, p. 130), containers use a nested iterator type
(see Section 2.14, p. 85) to traverse nodes.

o Knowledge about container implementation is completely hidden.
e [terator capabilities often depend on kind of container:

o singly-linked list has unidirectional traversal
o doubly-linked list has bidirectional traversal

o hashing list has random traversal
e [terator operator “++” moves forward to the next node, until past the end of the container.

¢ For bidirectional iterators, operator “~-"" moves in the reverse direction to “++.

152 CHAPTER 2. C++

2.33.1.1 Vector

e vector has random access, length, subscript checking (at), and assignment (like Java array).

std::vector<T>

vector() create empty vector
vector(size, [initialization]) create vector with N empty/initialized elements
~vector() erase all elements
unsigned int size() vector size
bool empty() size() ==0
T &operator[](int i) access ith element, NO subscript checking
T &at(int i) access ith element, subscript checking
vector &operator=(const vector &) vector assignment
void push_back(const T &x) add x after last element
void pop_back() remove last element
void resize(int n) add or erase elements at end so size() ==n
void clear() erase all elements
iterator begin() iterator pointing to first element
iterator end() iterator pointing AFTER last element
iterator rbegin() iterator pointing to last element
iterator rend() iterator pointing BEFORE first element
iterator insert(iterator posn, const T &x) | insert x before posn
iterator erase(iterator posn) erase element at posn

-~ push —=

_J=~— pop

e Vector declaration may specify an initial size, e.g., vector<int> v(size), like a dimension.

e When size is known, more efficient to dimension and initialize to reduce dynamic allocation.

int size;
cin >> size; // read dimension
vector<int> vi(size); // think int v1[size]

vector<int> v2(size, 0); // think int v2[size] = { 0 }
int a[] = { 16, 2, 77, 29 };

vector<int> v3(a, &a[4]); // think int v3[4]; v3 = a;
vector<int> v4(v3); // think int v4[size]; v4 = v3

e vector is alternative to C/C+ arrays (see Section 2.12.3.1, p. 78).

2.33. TEMPLATE 153

#include <vector>

int i, elem;

vector<int> v; // think: int v[0]

for (;;) { // create/assign vector
cin >> elem;

if (cin.fail()) break;
v.push_back(elem); // add elem to vector
}

vector<int> c; // think: int c[0]
c=Vv; // array assignment
for (i=c.ssize() - 1;0<=10;i-=1) {
cout << c.at(i) << " "; // subscript checking
}
cout << endl;
v.clear(); // remove ALL elements for reuse

e vector does not grow implicitly for subscripting.

v[27] = 17; // segmentation fault!
v.at(27) = 17; // out_of_range exception (subscript error)

e Matrix declaration is a vector of vectors (see also page 85):

vector< vector<int> > m;

e Again, it is more efficient to dimension, when size is known.
#include <vector> _

vector< vector<int> > m(5, vector<int>(4)); 0/1]2]3

for (intr=0;r<m.size();r +=1) { 11213l4
for (intc = 0; ¢c < m[rl.size(); c += 1) { —

m[r][c] = r+c; / or m.at(r).at(c) 2\314]5

| } =345l

for (intr=0;r<m.size();r+=1) { | T415/6]7

for (intc = 0; ¢ < m[r].size(); c += 1) {
cout << mfr]lc] << ", ";

cout << endl;

e Optional second argument is initialization value for each element, i.e., 5 rows of vectors each
initialized to a vector of 4 integers initialized to zero.

¢ All loop bounds use dynamic size of row or column (columns may be different length).

¢ Alternatively, each row is dynamically dimensioned to a specific size, e.g., triangular matrix.

154 CHAPTER 2. C++

vector< vector<int> > m(5); / 5 empty rows 6
for (intr=0;r<msize(); r+=1) { -
m[r].resize(r + 1); // different length 112
for (intc=0;c<m[]size();c+=1){ [] s34
m[r][c] = r+c; // or m.at(r).at(c) -
| T13/4)5]6
} =14/5]6]7]8
e [terator allows traversal in insertion order or random order.
std::vector<T>::iterator
++, —— (insertion order) forward/backward operations
+, +=, -, —= (random order) | movement operations
begin() end()
l ++ —= - - i
¢
o 1 2 3 af
rend() -- — =— ++ rbegin()

Iterator’s value is a pointer to its current vector element = dereference to access element.

vector<int> v(3);
vector<int>::iterator it;

v[0] = 2; // Initialize first element
it = v.begin(); // Iintialize iterator to first element
cout << V[0] << " " << »v.begin() << " " << +it << endl;

If erase and insert took subscript argument, no iterator necessary!

Use iterator like subscript for random access by adding/subtracting from begin/end.

v.erase(v.begin()); // erase Vv[0], first
v.erase(v.end() - 1); / erase v[N - 1], last (why = 1”?)
v.erase(v.begin() + 3); // erase v[3]

Insert or erase during iteration using an iterator causes failure.

2.33. TEMPLATE

vector<int> v;
for (inti=0;i<b5;i+=1) / create
v.push_back(2 i);

v.erase(v.begin() + 3);
int i;

for (i=0;i<5&&V[i]!=4;i+=1);
v.insert(v.begin() + i, 33);

// values: 0, 2, 4, 6, 8
// remove V[3] : 6
// find position of value 4 using subscript

// insert 33 before value 4

// print reverse order using iterator (versus subscript)

vector<int>::reverse_iterator r;

for (r = v.rbegin(); r = v.rend(); r ++) / ++ move towards rend

cout << *r << endl;

2.33.1.2 Map

// values: 8, 4, 33, 2, 0

e map (dictionary) has random access, sorted, unique-key container of pairs (Key, Val).

155

e set (dictionary) is like map but the value is also the key (array maintained in sorted order).

std::map<Key,Val> / std::pair<const Key,Val>

map([initialization])
~map()

create empty/initialized map
erase all elements

unsigned int size()

bool empty()

Val &operator[](const Key &k)
int count(Key key)

map size

size() ==

access pair with Key k

0 = no key, 1 = key (unique keys)

map &operator=(const map &)
insert(pair<const Key,Val>(k, v))
erase(Key k)

void clear()

iterator begin()

iterator end()

iterator rbegin()

iterator rend()

iterator find(Key &k)

iterator insert(iterator posn, const T &x)
iterator erase(iterator posn)

map assignment

insert pair

erase key k

erase all pairs

iterator pointing to first pair
iterator pointing AFTER last pair
iterator pointing to last pair
iterator pointing BEFORE first pair
find position of key k

insert x before posn

erase pair at posn

pair
first

second

blue

green

values

keys
red

156 CHAPTER 2. C++

#include <map>

map<string, int> m; // Key => string, Val => int
m["green"] = 1; // create, set to 1
m["blue"] = 2; // create, set to 2
m["red"]; // create, set to 0 for int
m["green"] = 5; // overwrite 1 with 5

cout << m["green"] << endl; // print 5
m.insert(pair<string,int>("yellow", 3)); / m[*yellow”] = 3

map<string, int> ¢(m); // Key => string, Val => int
c=m; // map assignment

if (c.count("black") = 0) // check for key “black”
c.erase("blue"); // erase pair(“blue”, 2)

¢ First key subscript creates entry; initialized to default or specified value.

e [terator can search and return values in key order.

std::map<T>:iterator / std::map<T>::reverse_iterator
++, —— (sorted order) ‘ forward/backward operations

e [terator returns a pointer to a pair, with fields first (key) and second (value).

#include <map>
map<string,int>::iterator f = m.find("green"); / find key position
if (f!=m.end()) // found ?

cout << "found " << f=>first << ’ ' << f=>second << endl;

for (f = m.begin(); f I= m.end(); f ++) // increasing order
cout << f->first << ' ' << f->second << endl;

map<string,int>::reverse_iterator r;
for (r = m.rbegin(); r != m.rend(); r ++) // decreasing order

cout << r—>first << ' ' << r->second << endl;
m.clear(); // remove ALL pairs

2.33.1.3 List

¢ In certain cases, it is more efficient to use a single (stack/queue/deque) or double (list) linked-
list container than random-access container.

e Examine list (arbitrary removal); stack, queue, deque are similar (restricted insertion/removal).

2.33. TEMPLATE 157

std::list<T>
list() create empty list
list(size, [initialization]) create list with N empty/initialized elements
~list() erase all elements
unsigned int size() list size
bool empty() size() == 0
list &operator=(const list &) list assignment
T front() first node
T back() last node
void push_front(const T &x) add x before first node
void push_back(const T &x) add x after last node
void pop_front() remove first node
void pop_back() remove last node
void clear() erase all nodes
iterator begin() iterator pointing to first node
iterator end() iterator pointing AFTER last node
iterator rbegin() iterator pointing to last node
iterator rend() iterator pointing BEFORE first node
iterator insert(iterator posn, const T &x) | insert x before posn
iterator erase(iterator posn) erase node at posn
node
=—pushr--1. | -] « T~ ~ 7 push —~
pop —— L __ ™ = =L __ = pop
front back

e Like vector, list declaration may specify an initial size, like a dimension.

e When size is known, more efficient to dimension and initialize to reduce dynamic allocation.

int size;

cin >> size; // read dimension
list<int> I1(size);

list<int> 12(size, 0);

int a[] ={ 16, 2, 77, 29 };

list<int> 13(a, &a[4]);

list<int> 14(13);

e [terator returns a pointer to a node.

std::list<T>::iterator / std::list<T>::reverse_iterator
++, —— (insertion order) ‘ forward/backward operations

158

CHAPTER 2. C++

#include <list>
struct Node {

char c; inti; double d;

Node(char c, int i, double d) : c(c), i(i), d(d) {}
1
list<Node> dI; // doubly linked list
for (inti=0;i<10;i+=1) { // create list nodes

dl.push_back(Node("a’+i, i, i+0.5)); // push node on end of list

list<Node>::iterator f;
for (f = dl.begin(); f != dl.end(); f ++) { / forward order

cout << "c:" << f=>Cc << " 1:" << f=5i << " d:" << f->d << endl;

}

while (0 < dl.size()) { // destroy list nodes
dl.erase(dl.begin()); // remove first node

} // same as dl.clear()

2.33.1.4 for_each

e Template routine for_each provides an alternate mechanism to iterate through a container.

e An action routine is called for each node in the container passing the node to the routine for

processing (Lisp apply).

#include <iostream>
#include <list>
#include <vector>

#include <algorithm> // for_each
using namespace std;

void print(int i) { cout << i << " ";} / print node
int main() {

list< int > int_list;
vector< int > int_vec;
for (inti=0;i<10;i+=1){ / create lists
int_list.push_back(i);
int_vec.push_back(i);
1
for_each(int_list.begin(), int_list.end(), print); // print each node
for_each(int_vec.begin(), int_vec.end(), print);

Type of the action routine is void rtn(T), where T is the type of the container node.
E.g., print has an int parameter matching the container node-type.
Use functor (see page 130) (retain state between calls) for more complex actions.

E.g., an action to print on a specified stream must store the stream and have an operator()
allowing the object to behave like a function:

2.34. GIT, ADVANCED 159

struct Print {

ostream &stream; // stream used for output
Print(ostream &stream) : stream(stream) {}
void operator()(int i) { stream <<i<< " ";}

b

int main() {

list< int > int_list;
vector< int > int_vec;

ﬁ-)-r_each(int_list.begin(), int_list.end(), Print(cout));
for_each(int_vec.begin(), int_vec.end(), Print(cerr));

}

e Expression Print(cout) creates a constant Print object, and for_each calls operator()(Node)
in the object.

2.34 Git, Advanced

Git Command Action

add file/dir-list schedules files for addition to repository

checkout repository-name | extract working copy from the repository

clone file/dir-list checkout branch or paths to working tree

commit -m "string" update the repository with changes in working copy

config update the repository with changes in working copy

rm file/dir-list remove files from working copy and schedule removal from
repository

diff show changes between commits, commit and working tree,
etc.

init create empty git repository or reinitialize an existing one

log show commit logs

mv file/dir-list rename file in working copy and schedule renaming in
repository

rm remove files from the working tree and from the index

remote manage set of tracked repositories

status displays changes between working copy and repository

2.34.1 Gitlab Global Setup
e Create a gitlab project and add partner to the project.

sign onto Gitlab https:/git.uwaterloo.ca

click New project on top right

enter Project path “project name”, e.g., WATCola, CC3K
enter Description of project

click Visibility Level Private (should be default)

AN o e

click Create Project (project page appears)

https://git.uwaterloo.ca

160 CHAPTER 2. C++

7. click HTTPS and get URL: https://git.uwaterloo.ca/jfdoe/project.git
o alternative: create SSH key, load SSH key into gitlab, and click SSH

8. click Project Members (seventh icon on left icon bar, looks like a student’s head ex-
ploding)

9. click Add members

10. type your partner’s userid (or name) into People and select your partner when their
name appears

11. click Project Access and select Master (allows push/pull to your project)

12. click Add users to project

2.34.2 Git Local Setup

e create local repository directory and change to that directory.

$ mkdir project
$ cd project

e init : create and initialize a repository.
$ git init # create empty git repository or reinitialize existing one
Initialized empty Git repository in /u/jfdoe/project/.qgit/

$Is —aF
Joo it/

o creates hidden directory .git to store local repository information.

e remote : connect local with global repository
$ git remote add origin https://git.uwaterloo.ca/jfdoe/project.qgit
If mistake typing origin URL, remove and add again.

$ git remote rm origin

e status : compare working copy structure with local repository

$ git status

On branch master

#

Initial commit

nothing to commit (create/copy files and use "git add" to track)

e add : add file contents to index

2.34. GIT, ADVANCED 161

$ emacs README.md # project description
$ git add README.md

$ git status

On branch master

#

Initial commit

#

Changes to be committed:

(use "git rm --cached <file>..." to unstage)
#

new file: README.md

o By convention, file README.md contains short description of project.

o

If project directory exists, create README.md and add existing files.

o Addition only occurs on next commit.

o Forgetting git add for new files is a common mistake.

o Add only source files into repository, e.g., .0, ».d, a.out, do not need to be versioned.

o Create hidden file .gitignore in projct directory and list working files not versioned.

ignore self
.gitignore

build files
=.[dO]

a.out

e commit : record changes to local repository

$ git commit —a —m "initial commit"
[master (root-commit) e025356] initial commit
1 file changed, 1 insertion(+)

create mode 100644 README.md

$ git status

On branch master

nothing to commit (working directory clean)

o -a (all) automatically stage modified and deleted files
o -m (message) flag documents repository change.

o if no -m (message) flag specified, prompts for documentation (using an editor if shell
environment variable EDITOR set).

¢ push : record changes to global repository

162 CHAPTER 2. C++

$ git push —u origin master

Username for ' https://git.uwaterloo.ca’: jfdoe

Password for ’ https:/jffdoe@git.uwaterloo.ca’ : XXxXxxxxx
Counting objects: 3, done.

Writing objects: 100% (3/3), 234 bytes, done.

Total 3 (delta 0), reused 0 (delta 0)

To gitlab@git.uwaterloo.ca:jfdoe/project.qgit

* [new branch] master -> master

Branch master set up to track remote branch master from origin.

o Options —u origin master only required for first push of newly created repository.
o Subsequently, use git push with no options.
o Always make sure your code compiles and runs before pushing; it is unfair to pollute

a shared global-repository with bugs.

e After project starts, joining developers clone the existing project.

$ git clone https://git.uwaterloo.ca/jfdoe/project.git
Username for ’ https://git.uwaterloo.ca’ : kdsmith
Password for ’ https:/jfdoe@git.uwaterloo.ca’ : yyyyyyyy

e pull : record changes from global repository

$ git pull
Username for ’ https://git.uwaterloo.ca’ : jfdoe
Password for ' https:/jffdoe@git.uwaterloo.ca’ : XXXxXxxxx

All developers must periodically pull the latest global version to local repository.

2.34.3 Modifying

e Editted files in working copy are implicitly scheduled for update on next commit.

$ emacs README.md # modify project description

e Add more files.

$ mkdir gizmo

$ cd gizmo

$ emacs Makefile x.h x.cc y.h y.cc # add text into these files
$Is -aF

../ Makefile x.cc x.h y.cc y.h

$ git add Makefile x.cc x.h y.cc y.h

2.34. GIT, ADVANCED 163

git status
On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

$

#

#

#

#

new file: Makefile
new file: x.cc
new file: x.h
new file: vy.cc
new file: vy.h
#
#
#
#
#
#

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout —- <file>..." to discard changes in working directory)

modified: ../README.md

e Commit change/adds to local repository.

$ git commit -a -m "update README.md, add gizmo files"
[master 0f4162d] update README.md, add gizmo files
6 files changed, 6 insertions(+)

create mode 100644 gizmo/Makefile

create mode 100644 gizmo/x.cc

create mode 100644 gizmo/x.h

create mode 100644 gizmoly.cc

create mode 100644 gizmol/y.h

$ git status

On branch master

Your branch is ahead of ’origin/master’ by 1 commit.
#

nothing to commit (working directory clean)

e rm removes files from BOTH local directory and repository.

$ git rm x.« # globbing allowed
rm ' gizmo/x.cc’

rm ' gizmo/x.h’

$Is -aF

... Makefile y.cc y.h

$ git status

On branch master

Your branch is ahead of ’origin/master’ by 1 commit.
#

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)
#

deleted: x.cc

deleted: x.h

Use --cached option to ONLY remove from repository.

¢ And update a file.

164 CHAPTER 2. C++

$ emacs y.cc # modify y.cc

e Possible to revert state of working copy BEFORE commit.

$ git checkout HEAD x.cc x.h y.cc # cannot use globbing
$Is —aF

./ .. Makefile x.cc x.h y.cc y.h

$ git status

On branch master

Your branch is ahead of ’origin/master’ by 1 commit.

#

nothing to commit (working directory clean)

o HEAD is symbolic name for last commit,
titled "update README.md, add gizmo files".

e Possible to revert state AFTER commit by accessing files in previous commits.

$ git commit -a -m "remove x files, update y.cc"
[master ecfbac4] remove x files, update y.cc

3 files changed, 1 insertion(+), 2 deletions(-)
delete mode 100644 gizmo/x.cc

delete mode 100644 gizmo/x.h

e Revert state from previous commit.

$ git checkout HEAD~1 x.cc x.h y.cc
$Is -aF
../ Makefile x.cc x.h y.cc y.h

o HEAD~1 means one before current commit (subtract 1),
titled "update README.md, add gizmo files".

e Check log for revision number.
$ git log
commit ecfbac4b80a2bf5e8141bddfdd2eef2f2dcda799

Author: Jane F Doe <jfdoe@uwaterloo.ca>
Date: Sat May 2 07:30:17 2015 -0400

remove X files, update y.cc
commit 0f4162d3a95a2e0334964f95495a079341d4eaad
Author: Jane F Doe <jfdoe@uwaterloo.ca>
Date: Sat May 2 07:24:40 2015 -0400

update README.md, add gizmo files
commit e025356c6d5eb2004314d54d373917a89afealab
Author: Jane F Doe <jfdoe@uwaterloo.ca>
Date: Sat May 2 07:04:10 2015 -0400

initial commit

2.34. GIT, ADVANCED 165

o Count top to bottom for relative commit number, or use a commit name
ecfbac4b80a2bf5e8141bddfdd2eef2f2dcda799.

e Commit restored files into local repository.

$ git commit -a -m "undo file changes"
[master 265d6f8] undo files changes

3 files changed, 2 insertions(+), 1 deletion(-)
create mode 100644 gizmo/x.cc

create mode 100644 gizmo/x.h

e git mv renames file in BOTH local directory and repository.

$ git mv x.h w.h

$ git mv x.cc w.cc

$ Is —aF

/.. Makefile w.cc w.h y.cc y.h

Copy files in the repository by copying working-copy files and add them.

$ cpy.hzh

$ cp y.cc z.cc

$ git add z.«

$ git status

On branch master

Your branch is ahead of ’origin/master’ by 3 commits.
#

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

renamed: X.cc —> w.cC
renamed: x.h -> w.h
new file: z.cc

new file: z.h

HoH o H R

e Commit changes in local repository.

$ git commit -a -m "renaming and copying"
[master 0c5f473] renaming and copying

4 files changed, 2 insertions(+)

rename gizmo/{x.cc => w.cc} (100%)

rename gizmo/{x.h => w.h} (100%)

create mode 100644 gizmo/z.cc

create mode 100644 gizmo/z.h

e Push changes to global repository.

166 CHAPTER 2. C++

$ git push
Counting objects: 19, done.
Delta compression using up to 48 threads.
Compressing objects: 100% (10/10), done.
Writing objects: 100% (17/17), 1.34 KiB, done.
Total 17 (delta 1), reused 0 (delta 0)
To gitlab@git.uwaterloo.ca:jfdoe/project.qgit
€025356..0c5f473 master —> master
Branch master set up to track remote branch master from origin.

e Only now can partner see changes.

2.34.4 Conflicts

e When multiple developers work on SAME files, source-code conflicts occur.

jfdoe | kdsmith
modify y.cc | modify y.cc
remove y.h
add t.cc

e Assume kdsmith commits and pushes changes.

e jfdoe commits change and attempts push.

$ git push
To gitlab@aqit.uwaterloo.ca:jfdoe/project.qgit
! [rejected] master —> master (non—fast—forward)

error: failed to push some refs to ’ gitlab@git.uwaterloo.ca:jfdoe/project.git’
To prevent you from losing history, non-fast-forward updates were rejected
Merge the remote changes (e.g. ' git pull”) before pushing again. See the
"Note about fast-forwards’ section of ’ git push ——help’ for details.

¢ Resolve differences between local and global repository by pulling.

$ git pull

remote: Counting objects: 5, done.

remote: Compressing objects: 100% (3/3), done.

remote: Total 5 (delta 1), reused 0 (delta 0)

Unpacking objects: 100% (5/5), done.

From git.uwaterloo.ca:jfdoe/project
2a49710..991683a master -> origin/master

Removing gizmo/y.h

Auto-merging gizmol/y.cc

CONFLICT (content): Merge conflict in gizmo/y.cc

Automatic merge failed; fix conflicts and then commit the resulit.

e File y.h is deleted, t.cc added, but conflict reported in gizmo/y.cc

2.35. UML 167

$Is -aF

./ ../ Makefile t.cc w.cc w.h y.cc z.cc zh
$ cat y.cc

<<<<<<< HEAD

| like file y.cc

This is file y.cc
>>>>>>> 5d89df953499a8fdfd6bc92fa3abbe9c8358dbd1

6 9

Chevrons “<” bracket conflicts throughout the file.

jfdoe can resolve by reverting their change or getting kdsmith to revert their change.

No further push allowed by jfdoe until conflict is resolved but can continue to work in local
repository.

jfdoe decides to revert to kdsmith version by removing lines from file.

$ cat y.cc
This is file y.cc

and commits the reversion so pull now indicates up-to-date.

$ git commit -a -m "revert y.cc"
[master 5497d17] revert y.cc

$ git pull

Already up-to—date.

e Conflict resolution tools exist to help with complex conflicts (unnecessary for this course).

2.35 UML

e Unified Modelling Language (UML) is a graphical notation for describing and designing
software systems, with emphasis on the object-oriented style.

e UML modelling has multiple viewpoints:

o class model : describes static structure of the system for creating objects
o object model : describes dynamic (temporal) structure of system objects

o interaction model : describes the kinds of interactions among objects

comment text r ***** target

¢ (Classes diagram defines class-based modelling, where a class is a type for instantiating
objects.

Focus on class modelling.

e Note / comment

168 CHAPTER 2. C++

¢ (Class has a name, attributes and operations, and may participate in inheritance hierarchies.

class name Person
- name : String

attributes | - age : Integer optional

(data) | - sex : Boolean
-owns: Car[0..5]
+ getName : String
operations | + getAge : Integer optional
(routines) | + getCars : Car [0..5]
+ buy(in car : Car, inout card : CreditCard) : Boolean

e Attribute describes a property in a class.

€@, “__9

[visibility] name [*“:” [type] [“[” multiplicity “]” | [“=" default]]

o visibility : access to property

+ = public, — = private, # = protected, ~ = package
o name : identifier for property (like field name in structure)
o type : kind of property (language independent)

Boolean, Integer, Float, String, class-name
o multiplicity : cardinality for instantiation of property:

0..(N|%), 0 to N or unlimited,

N short for N..N,

* short for 0..x,

defaults to 1

o default : expression that evaluates to default value(s) for property

e operation : action invoked in context of object from the class

@,

[visibility] name [“(” [parameter-list] “)”] [“:” return-type | [“[”” multiplicity “]” |

o parameter-list : comma separated list of input/output types for operation

[direction] parameter-name ““:” type [“[”” multiplicity “]”]
[“=" default] [“{” modifier-list “}”]]

o direction : direction of parameter data flow
“in” (default) | “out” | “inout”

o return-type : output type from operation

e Only specify attributes/operations useful in modelling: no flags, counters, temporaries,
constructors, helper routines, etc.

¢ Attribute with type other than basic type often has an association: aggregation or composi-
tion.

2.35. UML 169

e Aggregation (<) is an association between an aggregate attribute and its parts (has-a).

Car = Tire
0..1 0..*

o car can have 0 or more tires and a tire can only be on 0 or 1 car

o aggregate may not create/destroy its parts, e.g., many different tires during car’s life-
time and tires may exist after car’s lifetime (snow tires).

class Car {
Tires «tires[4]; // array of pointers to tires

e Composition (@) is a stronger aggregation where a part is included in at most one composite
at a time (owns-a).

Car S Brake

o car has 4 brakes and each brake is on 1 car

o composite aggregate often does create/destroy its parts, i.e., same brakes for lifetime of
car and brakes deleted when car deleted (unless brakes removed at junkyard)

class Car {
DiscBrake brakes[4]; // array of brakes

e Association can be written with an attribute or line, as well as bidirectional.

Person Car
Person Car
owns : Car owned : Person

o If UML graph is cluttered with lines, create association in class rather than using a line.

o E.g., if 20 classes associated with Car, replace 20 lines with attributes in each class.

¢ Generalization : reuse through forms of inheritance.

170 CHAPTER 2. C++

Polygon

abstract class | Rectilinear | |, ¢i1.¢ - Integer

+angle : 90| |[+move(in x : Integer, iny : Integer)

multiple | inheritance single inheritance
concrete class Rectangle Trapezoid | gyperclass

rsides ; Integer sides ; Integer| (base)

H+movel(...) +move(...)

ZFsingle inheritance
Square subclass
(derived)
H+move(...)

o Represent inheritance by arrowhead A to establish is-a relationship on type, and reuse
of attributes and operations.

o Association class can be implemented with forms of multiple inheritance (mixin).

¢ For abstract class, the class name and abstract operations are ifalicized.

Classes Diagram
Vehicle * 1
- make: String

Client
- name: String |1

Insurance Policy
- company: String

—

- model: String Lease - phone: String [® = policy: String
- colour: String 7= ™ L start: Date[;, [+ rate(): Double
A "k end: Date 1 A
[[1 EE—
Truck||SUV || Car Corporate | | Individual
%
Accessory
- surcharge: Double | ____ no charge ﬁ
+ surcharge(): Double during sales
A
| |
FloorMat GPS SatelliteRadio

e UML diagram is too complex if it contains more than about 25 boxes.

e UML has many facilities, supporting complex descriptions of relationships among entities.

2.36. COMPOSITION /INHERITANCE DESIGN 171

2.36 Composition / Inheritance Design

e Duality between “has-a” (composition) and “is-a” (inheritance) relationship (see page 137).

e Types created from multiple composite classes; types created from multiple superclasses.

Composition ‘ Inheritance
class A {.. .}; class A {.. .};
class B{ A a; ...}; classB: A {..};
class C {...}; class C {...};

classD{Bb;Cc;..};|classD :B, C{..};

e Both approaches:

o remove duplicated code (variable/code sharing)

o have separation of concern into components/superclasses.

¢ Choose inheritance when evolving hierarchical types (taxonomy) needing polymorphism.

Vehicle
Construction
Heavy Machinery
Crane, Grader, Back-hoe
Haulage
Semi-trailer, Flatbed
Passenger
Commercial
Bus, Fire-truck, Limousine, Police-motorcycle
Personal
Car, SUV, Motorcycle

e For maximum reuse and to eliminate duplicate code, place variables/operations as high in
the hierarchy as possible.

e Polymorphism requires derived class maintain base class’s interface (substitutability).
o derived class should also have behavioural compatibility with base class.

e However, all taxonomies are an organizational compromise: when is a car a limousine and
vice versa.

¢ Not all objects fit into taxonomy: flying-car, boat-car.
e Inheritance is rigid hierarchy.

¢ Choose composition when implementation can be delegated.

172 CHAPTER 2. C++

class Car {
SteeringWheel s; // fixed
Donut spare;
Wheel *wheels[4]; // dynamic

Engine *eng;
Transmission =trany;
public:
Car(Engine e = fourcyl, Transmission *t = manual) :
eng(e), trany(t) { wheels[i] = ...}
rotate() {...} // rotate tires

wheels(Wheels *w[4]) {...} // change wheels
engine(Engine e) {...} // change engine
I
e Composition may be fixed or dynamic (pointer/reference).
e Composition still uses hierarchical types to generalize components.
o Engine is abstract class that is specialized to different kinds of engines, e.g., 3,4,6,8

cylinder, gas/diesel/hybrid, etc.

2.37 Design Patterns

e Design patterns have existed since people/trades developed formal approaches.

E.g., chef’s cooking meals, musician’s writing/playing music, mason’s building pyramid/cathedral.

Pattern is a common/repeated issue; it can be a problem or a solution.

Name and codify common patterns for educational and communication purposes.

Patterns help:

o extend developers’ vocabulary

o offer higher-level abstractions than routines or classes

2.37.1 Singleton Pattern

e singleton patterns single instance of class

#include <Database.h>
class Database {
Database() { ... } / no create, copy, assignment
Database(const Database &database) { ... }
Database &operator=(const Database &database) { ... }
public:
static Database &getDB() {
static Database database; // actual database object
return database;

... // members to access database

2.37. DESIGN PATTERNS 173
e Allow each users to have they own declaration but still access same value.

Database &database = Database::getDB(); // user 1
Database &db = Database::getDB(); // user 2
Database &info = Database::getDB(); // user 3

e Alternative is global variable, which forces name and may violate abstraction.

2.37.2 Template Method

e template method : provide algorithm but defer some details to subclass

class PriceTag { // abstract template
virtual string label() = 0; // details for subclass
virtual string price() = 0;
virtual string currency() = 0;
public:
string tag() { return label() + price() + currency(); }
I

class FurnitureTag : public PriceTag { // actual method
string label() { return "furniture ";}
string price() { return "$1000 "; }
string currency() { return "Cdn"; }

I
class ClothingTag : public PriceTag { // actual method

I

FurnitureTag ft;

ClothingTag ct;

cout << fttag() << " " << ct.tag() << endl;

¢ template-method routines are non-virtual, i.e., not overridden

2.37.3 Observer Pattern

e observer pattern : 1 to many dependency = change updates dependencies

174 CHAPTER 2. C++

struct Fan { // abstract
Band &band;
Fan(Band &band) : band(band) {}
virtual void notify(CD cd) = 0;
1
struct Groupie : public Fan { // concrete
Groupie(Band &band) : Fan(band) { band.attach(«this); }
~Groupie() { band.deattach(=this); }
void notify(CD cd) { buy/listen new cd }
1
struct Band {
list<Fan > fans; // list of fans
void attach(Fan &fan) { fans.push_back(&fan); }
void deattach(Fan &fan) { fans.remove(&fan); }
void notifyFans() { /* loop over fans performing action + }

1

Band dust; // create band
Groupie g1(dust), g2(dust); / register
dust.notifyFans(); // inform fans about new CD

e manage list of interested objects, and push new events to each

e alternative design has interested objects pull the events from the observer

o = observer must store events until requested

2.37.4 Decorator Pattern

e decorator pattern : attach additional responsibilities to an object dynamically

struct Window { // abstract
virtual void scroll(int amt) = 0;
virtual void setTitle(string t) = 0;

virtual void draw() = 0;

|3

struct PlainWindow : public Window { // concrete
void scroll(int amt) { };
void setTitle(string t) { };
void draw() { /+ draw a plain window ¥ };

struct Decorator : public Window { // specialize
Window &component; // composition
Decorator(Window &component) : component(component) {}
void scroll(int amt) { component.scroll(amt); };
void setTitle(string t) { component.setTitle(t); };
void draw() { component.draw(); };

2.37. DESIGN PATTERNS 175

struct Scrollbar : public Decorator { // specialize

é-n-um Kind { Hor, Ver };
Scrollbar(Window &window, Kind k) : Decorator(window), ... {}
void scroll(int amt) { /» add horizontal/vertical scroll bar + }

I

struct Title : public Decorator { // specialize

;I'-it-le(Window &window, ...) : Decorator(window), ... {}
void setTitle(string t) { /* add title at top of window '}
b

struct Border : public Decorator { // specialize

enum Colour { RED, GREEN, BLUE };
Border(Window &window, Colour c, int width) : Decorator(window), ... {}
void draw() { /+ add border around window '}

1

PlainWindow w1;

Scrollbar vsb1(w1, Scrollbar::Ver); // add vertical scroll bar
Border rb5(vsb1, Border::RED, 5); // add red border

Border borderedScrollable(rb5, Border::BLUE, 10); / add blue border

PlainWindow w2;

Scrollbar vsb2(w2, Scrollbar::Ver); // add vertical scrollbar
Scrollbar hsb(vsb2, Scrollbar::Hor); // add horizontal scrollbar
Title titledScrollable(hsb); // add title

e decorator only mimics object’s type through base class

¢ decorator has same interface but delegates to component to specialize operations

e decorator can be applied multiple times in different ways to produce new combinations at
runtime

¢ allows decorator to be dynamically associated with different object’s, or multiple decorators
associated with same object

2.37.5 Factory Pattern

e factory pattern : generalize creation of family of products with multiple variants

176

CHAPTER 2. C++

struct Food {...}; // abstract product
struct Pizza : public Food {.. .}; // concrete product
struct Burger : public Food {...}; / concrete product

struct Restaurant { // abstract factory product
enum Kind { Pizza, Burger };
virtual Food +order() = O;
virtual int staff() = O;

|3

struct Pizzeria : public Restaurant { // concrete factory product
Food ~order() {...}
int staff() {...}

s:truct Burgers : public Restaurant { // concrete factory product
Food ~order() {...}
int staff() {...}

1

enum Type { PizzaHut, BugerKing };

struct RestaurantFactory { // abstract factory
virtual Restaurant =create() = 0;

b

struct PizzeriaFactory : RestaurantFactory { // concrete factory
Restaurant =create() {...}
|3

struct BurgerFactory : RestaurantFactory { // concrete factory
Restaurant *create() {...}
b

PizzeriaFactory pizzeriaFactory;

BurgerFactory burgerFactory;

Restaurant *pizzaHut = pizzeriaFactory.create();

Restaurant *burgerKing = burgerFactory.create();

Food =dispatch(Restaurant::Kind food) { // parameterized creator

switch (food) {

case Restaurant::Pizza: return pizzaHut->order();
case Restaurant::Burger: return burgerKing->order();
default: ; // error

use factory-method pattern to construct generated product (Food)
use factory-method pattern to construct generated factory (Restaurant)

clients obtain a concrete product (Pizza, Burger) from a concrete factory (PizzaHut, BugerK-
ing), but product type is unknown

client interacts with product object through its abstract interface (Food)

2.38.

DEBUGGER 177

2.38 Debugger

An interactive, symbolic debugger effectively allows debug print statements to be added and
removed to/from a program dynamically.

Do not rely solely on a debugger to debug a program.

Some systems do not have a debugger or the debugger may not work for certain kinds of
problems.

A good programmer uses a combination of debug print statements and a debugger when
debugging a complex program.

A debugger does not debug a program, it merely helps in the debugging process.

Therefore, you must have some idea (hypothesis) about what is wrong with a program before
starting to look.

2.38.1 GDB

The two most common UNIX debuggers are: dbx and gdb.

File test.cc contains:

int a[10] ={ 0, 1};
r(a);

1 intr(int a[]) {

2 int i = 100000000;

3 alil += 1; // really bad subscript error
4 return a[i];

5}

6 int main() {

7

8

9

Compile program using the —g flag to include names of variables and routines for symbolic
debugging:

$ g++ —g test.cc

Start gdb:

$ gdb ./a.out
... gdb disclaimer
(gdb) < gdb prompt

Like a shell, gdb uses a command line to accept debugging commands.

178 CHAPTER 2. C++

GDB Command Action
<Enter> repeat last command
run [shell-arguments] start program with shell arguments
backtrace print current stack trace
print variable-name print value in variable-name
frame [n] go to stack frame n
break routine / file-name:line-no | set breakpoint at routine or line in file
info breakpoints list all breakpoints
delete [n] delete breakpoint n
step [n] execute next n lines (into routines)
next [n] execute next n lines of current routine
continue [n] skip next n breakpoints
list list source code
quit terminate gdb

e Command abbreviations are in red.
e <Enter> without a command repeats the last command.

e run command begins execution of the program:

(gdb) run

Starting program: /u/userid/cs246/a.out

Program received signal SIGSEGV, Segmentation fault.

0x000106f8 in r (a=0xffbefa20) at test.cc:3

3 alil += 1; // really bad subscript error

o If there are no errors in a program, running in GDB is the same as running in a shell.

o If there is an error, control returns to gdb to allow examination.

o If program is not compiled with -g flag, only routine names given.

¢ backtrace command prints a stack trace of called routines.
(gdb) backtrace

#0 0x000106f8 in r (a=0xffoefa08) at test.cc:3
#1 0x00010764 in main () at test.cc:8

o stack has 2 frames main (#1) and r (#0) because error occurred in call to r.

e print command prints variables accessible in the current routine, object, or external area.

(gdb) print i
$1 = 100000000

e Can print any C+ expression:

2.38. DEBUGGER 179

(gdb) print a
$2 = (int =) Oxffbefa20

(gdb) p +a

$3 =0

(gdb) p a[1]
$4 = 1

(gdb) p a[1]+1
$5 =2

¢ set variable command changes the value of a variable in the current routine, object or exter-
nal area.

(gdb) set variable i = 7
(gdb) p i

$6 =7

(gdb) set var a[0] = 3

(gdb) p a[0]
$7 =3

Change the values of variables while debugging to:

o investigate how the program behaves with new values without recompile and restarting
the program,

o to make local corrections and then continue execution.

e frame [n] command moves the current stack frame to the nth routine call on the stack.

(gdb) f O

#0 0x000106f8 in r (a=0xffoefa08) at test.cc:3
3 alil += 1; // really bad subscript error
(gdb) f 1

#1 0x00010764 in main () at test.cc:8

8 r(a);

o If nis not present, prints the current frame
o Once moved to a new frame, it becomes the current frame.

o All subsequent commands apply to the current frame.
¢ To trace program execution, breakpoints are used.

e break command establishes a point in the program where execution suspends and control
returns to the debugger.

(gdb) break main

Breakpoint 1 at 0x10710: file test.cc, line 7.
(gdb) break test.cc:3

Breakpoint 2 at 0x106d8: file test.cc, line 3.

o Set breakpoint using routine name or source-file:line-number.

180

o info breakpoints command prints all breakpoints currently set.

(gdb) info break

Num Type Disp Enb Address What

1 breakpoint keep y 0x00010710 in main at test.cc:7
2 Dbreakpoint keep y 0x000106d8 in r(int«) at test.cc:3

e Run program again to get to the breakpoint:

(gdb) run

The program being debugged has been started already.
Start it from the beginning? (y or n) y

Starting program: /u/userid/cs246/a.out

Breakpoint 1, main () at test.cc:7

7 inta[10] ={ 0, 1};
(gdb) p a[7]
$8 =0

CHAPTER 2. C++

e Once a breakpoint is reached, execution of the program can be continued in several ways.

e step [n] command executes the next n lines of the program and stops, so control enters

routine calls.

(gdb) step

8 r(a);

(gdb) s

r (a=0xffbefa20) at test.cc:2

2 int i = 100000000;

(gdb) s

Breakpoint 2, r (a=0xffbefa20) at test.cc:3

3 alil += 1; // really bad subscript error

(gdb) <Enter>

Program received signal SIGSEGV, Segmentation fault.
0x000106f8 in r (a=0xffbefa20) at test.cc:3

3 alil += 1; // really bad subscript error

(gdb) s

Program terminated with signal SIGSEGV, Segmentation fault.
The program no longer exists.

o If nis not present, 1 is assumed.

o If the next line is a routine call, control enters the routine and stops at the first line.

e next [n] command executes the next n lines of the current routine and stops, so routine calls

are not entered (treated as a single statement).

2.38. DEBUGGER 181

(gdb) run

Breakpoint 1, main () at test.cc:7

7 int a[10] ={ 0, 1 };

(gdb) next

8 r(a);

(gdb) n

Breakpoint 2, r (a=0xffbefa20) at test.cc:3

3 ali] += 1; // really bad subscript error
(gdb) n

Program received signal SIGSEGV, Segmentation fault.
0x000106f8 in r (a=0xffbefa20) at test.cc:3

3 alil += 1; // really bad subscript error

e continue [n] command continues execution until the next breakpoint is reached.

(gdb) run

Breakpoint 1, main () at test.cc:7

7 int a[10] ={ 0, 1 };

(gdb) ¢

Breakpoint 2, r (a=0x7fffffffe7d0) at test.cc:3

3 alil += 1; // really bad subscript error
(gdb) p i

$9 = 100000000

(gdb) set var i = 3
(gdb) c

Continuing.

Program exited normally.

¢ Jist command lists source code.

(gdb) list

1 intr(int a[]) {

2 int i = 100000000;

3 alil += 1; // really bad subscript error
4 return a[i];

5

6 int main() {

7 inta[10] ={ 0, 1};

8 rca);

9 }

o with no argument, list code around current execution location

o with argument line number, list code around line number

e quit command terminate gdb.

182 CHAPTER 2. C++

(gdb) run

éréakpoint 1, main () at test.cc:7
7 int a[10] ={ 0, 1 };

1: a[0] = 67568

(gdb) quit

The program is running. Exit anyway? (y or n) y

2.39 Compiling Complex Programs

¢ As number of TUs grow, so do the references to type/variables (dependencies) among TUs.
e When one TU is changed, other TUs that depend on it must change and be recompiled.

e For a large numbers of TUs, the dependencies turn into a nightmare with respect to re-
compilation.

2.39.1 Dependencies

¢ A dependency occurs when a change in one location (entity) requires a change in another.

¢ Dependencies can be:
o loosely coupled, e.g., changing source code may require a corresponding change in
user documentation, or
o tightly coupled, changing source code may require recompiling of some or all of the
components that compose a program.

¢ Dependencies in C/CH occur as follows:

o executable depends on .o files (linking)
o .o files depend on .C files (compiling)
o .C files depend on .h files (including)

source code dependency graph

x.h #include "y.h"

. X.0—x.C—=x.h
x.C #include "x.h"

y.h #include "z .h" a.out yo—=yC—=yh >

.C #include "y.h"
y Y zo—=z.C—=1z.h

z.h #include "y.h"
z.C #include "z.h"

e Cycles in #include dependencies are broken by #ifndef checks (see page 99).

e The executable (a.out) is generated by compilation commands:

2.39. COMPILING COMPLEX PROGRAMS 183

$ g++ ¢ z.C # generates z.0
$ g++ cy.C # generates y.o
$ g++ ¢ x.C # generates x.0

$ g++ x.0 y.0 z.0 # generates a.out

e However, it is inefficient and defeats the point of separate compilation to recompile all pro-
gram components after a change.

e If a change is made to y.h, what is minimum recompilation necessary? (all!)
¢ Does any change to y.h require these recompilations?

e Often no mechanism to know the kind of change made within a file, e.g., changing a com-
ment, type, variable.

e Hence, “change” may be coarse grain, i.e., based on any change to a file.
¢ One way to denote file change is with time stamps.
e UNIX directory stores the time a file is last changed, with second precision.

e Using time to denote change means dependency graph is temporal ordering where root has
newest (or equal) time and leafs oldest (or equal) time.

1:00 12:30 12:00 3:00 2:30 2:00
x.0—x.C—=x.h x.0—x.C—=x.h

1:01/ 1:00 12:35 12:40 3:01/ 1:00 12:35 12:40

a.out y'oﬂyoﬂyh> a.out y.o%yCﬂyh>

1:00 12:30 12:15 1:00 12:30 12:15
zo—=z.C—=2zh zo—=z.C—=2zh

@)

File x.h includes y.h and z.h, file y.h includes z.h, file z.h includes y.h,

@)

Files x.0, y.0 and z.o created at 1:00 from compilation of files created before 1:00.

o

File a.out created at 1:01 from link of x.0, y.o and z.o.

o

Changes are subsequently made to x.h and x.C at 2:00 and 2:30.
Only files x.0 and a.out need to be recreated at 3:00 and 3:01. (Why?)

@)

2.39.2 Make

e make is a system command taking a dependency graph and uses file change-times to trigger
rules that bring the dependency graph up to date.

¢ make dependency-graph is relationship between product and set of sources.

¢ make does not understand relationships among sources, one that exists at the source-
code level and is crucial.

184 CHAPTER 2. C++

¢ Hence, make dependency-graph loses some relationships (dashed lines):

/X.C
X057 "~ =x.h

g\/ry.C
aout (=yo<--~2yh

///VZ.h
/7 -

e
zo—z.C

e E.g., source x.C depends on source x.h but x.C is not a product of x.h like x.0 is a product of
x.C and x.h.

e Two most common UNIX makes are: make and gmake (on Linux, make is gmake).

e Like shells, there is minimal syntax and semantics for make, which is mostly portable across
systems.

e Most common non-portable features are specifying dependencies and implicit rules.
¢ Basic make file has string variables with initialization, and a list of targets and rules.

e Make file can have any name, but make implicitly looks for a file named makefile or Makefile
if no file name is specified.

e Each target has a list of dependencies, and possibly a set of commands specifying how to
re-establish the target.

variable = value # variable

target : dependency1 dependency2 ... # target / dependencies
command1 # rules
command2

e Commands must be indented by one tab character.
e make is invoked with a target, which is root or subnode of a dependency graph.

¢ make builds the dependency graph and decorates the edges with time stamps for the specified
files.

e If any of the dependency files (leafs) is newer than the target file, or if the target file does
not exist, the commands are executed by the shell to update the target (generating a new

product).

¢ Makefile for previous dependencies:

2.39. COMPILING COMPLEX PROGRAMS 185

a.out : x.0 y.0 z.0 # place final target first
g++ X.0 y.0 2.0 -0 a.out
x.0 : x.C x.h y.h z.h # now order doesn’ t matter

g++ —g -Wall -c x.C
y.0 : y.Cy.h zh

g++ —g -Wall -c y.C
z0:2zCzhyh

g++ —g -Wall -c z.C

e Check dependency relationship (assume source files just created):

$ make -n -f Makefile a.out
g++ -g -Wall -c x.C

g++ —g -Wall -c y.C

g++ -g -Wall -c z.C

g++ X.0 y.0 2.0 -0 a.out

All necessary commands are triggered to bring target a.out up to date.

o -n builds and checks the dependencies, showing rules to be triggered (leave off to
execute rules)
o -f Makefile is the dependency file (leave off if named [Mm]akefile)

o a.out target name to be updated (leave off if first target)

¢ Generalize and eliminate duplication using variables:

CXX = g++ # compiler
CXXFLAGS = -g -Wall -¢ # compiler flags
OBJECTS = x.0 y.0 z.0 # object files forming executable
EXEC = a.out # executable name
${EXEC]} : ${OBJECTS} # link step
${CXX} ${OBJECTS} -0 ${EXEC}
x.0 : x.C x.h y.h z.h # targets / dependencies / commands

${CXX} ${CXXFLAGS} x.C
y.0 : y.Cy.h zh

${CXX} ${CXXFLAGS} y.C
z0:2C zhyh

${CXX} ${CXXFLAGS} z.C

¢ Eliminate common rules:

o make can deduce simple rules when dependency files have specific suffixes.
o E.g., given target with dependencies:
x.0 : x.C x.h y.h z.h
make deduces the following rule:
${CXX} ${CXXFLAGS} -c -0 x.0 # special variable names

where -0 x.0 is redundant as it is implied by -c.

186 CHAPTER 2. C++

o This rule uses variables ${CXX} and ${CXXFLAGS} for generalization.

e Therefore, all rules for x.0, y.0 and z.0 can be removed.

CXX = g++ # compiler
CXXFLAGS = -g -Wall # compiler flags, remove -c
OBJECTS = x.0 y.0 z.0 # object files forming executable
EXEC = a.out # executable name
${EXEC]} : ${OBJECTS} # link step

${CXX} ${OBJECTS} -0 ${EXEC}
X.0 : Xx.C x.h y.h z.h # targets / dependencies

y.0 : y.Cy.h zh
z0:2C zhyh

e Because dependencies are extremely complex in large programs, programmers seldom con-
struct them correctly or maintain them.

e Without complete and up to date dependencies, make is useless.

e Automate targets and dependencies:

CXX = g++ # compiler
CXXFLAGS = -g -Wall -MMD # compiler flags
OBJECTS = x.0 y.0 z.0 # object files forming executable
DEPENDS = ${OBJECTS:.o=.d} # substitute “0” with “.d”
EXEC = a.out # executable name
${EXEC} : ${OBJECTS} # link step
${CXX} ${OBJECTS} -0 ${EXEC}
-include ${DEPENDS} # copies files x.d, y.d, z.d (if exists)
.PHONY : clean # not a file name
clean : # remove files that can be regenerated

rm -rf ${DEPENDS} ${OBJECTS} ${EXEC} # alternative ~d +.0

o Preprocessor traverses all include files, so it knows all source-file dependencies.

o g++ flag -MMD writes out a dependency graph for user source-files to file source-file.d

file | contents

x.d | x.0: x.C x.h y.h z.h
y.d | y.o:y.Cy.h zh
zd | z0:z2Czhyh

o g++ flag -MD generates a dependency graph for user/system source-files.
o -include reads the .d files containing dependencies.

o .PHONY indicates a target that is not a file name and never created; it is a recipe to be
executed every time the target is specified.

* A phony target avoids a conflict with a file of the same name.

2.39. COMPILING COMPLEX PROGRAMS 187

o Phony target clean removes product files that can be rebuilt (save space).

$ make clean # remove all products (don’t create “clean”)

e Hence, possible to have universal Makefile for single or multiple programs.

http://www.student.cs.uwaterloo.ca/~cs343/examples/Makefile.1
https://www.student.cs.uwaterloo.ca/~cs246/current/codeExamples/Makefile.2

188 CHAPTER 2. C++

Index

1,7, 54

I=, 45, 54
" 6,90

2
#define, 98
ftelif, 99
ftelse, 99
#endif, 99
#if, 99
ttifdef, 99
#ifndef, 99
#include, 97
$, 2,25
${1, 25

%, 2

&, 54

&&, 54

&=, 54
r,5,43

*, 54, 80
*=, 54

+, 45, 54
++, 151
+=, 54
Y

-, 54

--, 151

-=, 54

->, 54
-MD, 186
-MMD, 186
-W, 41

-c, 117
-g,41, 177
-0,41, 117
-std, 41
-v, 97

189

Y

. 80

.C, 41

.c, 41

.cc, 41, 120
.cpp, 41

.h, 97, 120
.snapshot, 11
/, 4,54

\, 5, 44

/=, 54

;, 65

i1, 54, 86, 137, 138

5 31

<, 21,45, 54
<<, 49, 54, 105
<<=, 54
<=,45, 54
<ctrl>-c, 6
<ctrl>-d, 21, 51
=,7,25,45, 54
==, 45,54, 113
>, 5,21,45, 54
>&, 21,22

>=, 45,54

>>, 49, 54, 105
>>=, 54

?:., 54

[1, 29, 45, 84
o/o, 54

°/o=, 54

&, 54

A 54

A=, 54

Y5

~ 4,54

a.out, 72

190

absolute pathname, 4
abstract class, 147
abstract data-type, 131
abstraction, 100, 130
access control, 130
add, 160
ADT, 131
aggregates, 78
aggregation, 169
alias, 86, 88, 140
alias, 7, 11
allocation
array, 79, 83
dynamic, 82
array, 83
heap, 83, 84, 151
array, 83
matrix, 84
stack, 59, 84
argc, 72
argument, 91
argv, 72
array, 53, 72, 74, 78, 79, 83, 84, 89, 93,
103
2-D, 84
deallocation, 84
dimension, 78, 79, 83, 90, 93, 152,
157
parameter, 93
assertion, 123
assignment, 54, 87, 108, 109, 142
array, 79, 152
initializing, 42
operator, 132, 135
association, 168
atoi, 72
attribute, 168

backquote, 5

backslash, 5, 44
backspace key, 2
backtrace, 178
backward branch, 66, 67
bang, 7

bash, 1, 27, 29

CHAPTER 2. C++

bash, 9
basic safety, 71
basic types, 42, 74
bool, 42
char, 42
double, 42
float, 42
int, 42
wchar_t, 42
behavioural, 171
bit field, 81
bitwise copy, 110
black-box testing, 122
block, 59, 89
bool, 42, 43
boolalpha, 49
boundary value, 123
break, 61, 67
labelled, 65
break, 179
breakpoint, 179
continue, 181
next, 180
step, 180
bridge, 133

C-c, 6
C-d, 21,51
c_str, 45
cascade, 49
case, 31, 61
5 31
pattern, 31
case-sensitive, 25
cast, 54-57, 76, 89, 94, 146
cat, 10
catch, 70
catch-any, 71
cd, 6
cerr, 48
char, 42, 43
chevron, 49, 54, 105, 150
chgrp, 20
chmod, 20
chsh, 9

2.39. COMPILING COMPLEX PROGRAMS

cin, 48
class, 100, 131
class model, 167
classes diagram, 167
clear, 52
clone, 16
cmp, 12
coercion, 56, 57, 76, 82, 95
cast, 57
explicit, 56, 57
reinterpret_cast, 57
cohesion, 39
high, 39
low, 39
comma expression, 84
options, 3
command-line arguments, 71
argc, 72
argv, 72
main, 71
command-line interface, 1
comment, 2
2
nesting, 41
out, 41, 99
commit, 161
compilation
g++, 41
compiler
options
-D, 98
-E, 97
-1,97
-MD, 186
-MMD, 186
-W, 41
-c, 117
-g, 41, 177
-0,41, 117
-std, 41
-v, 97
separate compilation, 97, 99
composition, 137, 169, 171
explicit, 137
concrete class, 148

191

conditional inclusion, 99
config, 15
const, 44, 77,92, 98, 101
constant, 43, 45, 101
initialization, 98
parameter, 92
variable, 45
construction, 138
constructor, 74, 102, 138, 142
const member, 113
copy, 108, 132, 142
implicit conversion, 104
literal, 104
passing arguments to other construc-
tors, 142
type, 74
container, 151
deque, 151
list, 151
map, 151
queue, 151
stack, 151
vector, 151, 152
contiguous object, 106
continue
labelled, 65
continue, 181
contra-variance, 141
control structure, 59
block, 59
looping, 59
break, 33
continue, 33
for, 32
while, 31
selection, 59, 60
break, 61
case, 31,61
dangling else, 60
default, 61
if, 30
pattern, 31
switch, 61, 72
test, 29
transfer, 59

192

conversion, 46, 55, 76, 104
cast, 54, 55
dynamic_cast, 146
explicit, 55, 94
implicit, 55, 91, 94, 104
narrowing, 55
promotion, 55
static_cast, 55
widening, 55

copy and swap, 112

copy constructor, 109, 132, 135

copy-modify-merge, 15
coupling, 39
loose, 39
tight, 39
cout, 48
cp, 10
csh, 1, 23, 29
csh, 9
current directory, 4
current stack frame, 179

dangling else, 60
dangling pointer, 83, 111, 126
data member, 80
dbx, 177
debug print statements, 124
debugger, 177
debugging, 122, 124
dec, 49
declaration, 41
basic types, 42
const, 98
type constructor, 74
type qualifier, 42
variable, 42
declaration before use, 135
Declaration Before Use, 95
decorator, 174
deep compare, 113
deep copy, 111
default
parameter, 95
default, 61
default constructor, 103

CHAPTER 2. C++

default initialized, 89
default value, 92, 103
parameter, 92
delegated, 171
delete, 82
[], 84
delete key, 2
dependency, 182
deque, 151, 156
dereference, 25, 54
design, 39
design pattern, 172
designated, 44
desktop, 1
destruction, 138
explicit, 106
implicit, 106
order, 106
destructor, 106, 138, 142
diff, 12
dimension, 78, 79, 83, 90, 93, 152, 157
double, 42, 43
double quote, 6, 24
downcast, 146
dynamic allocation, 103
dynamic storage management, 82, 107
dynamic_cast, 146

echo, 8
egrep, 18
encapsulation, 130, 151
end of file, 51
end of line, 40
endl, 40, 49
Enter key, 2
enum, 75, 98
enumeration, 74, 75
enumerator, 75
eof, 51
equivalence
name, 86
structural, 86
equivalence partitioning, 122
error guessing, 123
escape, 5

2.39. COMPILING COMPLEX PROGRAMS

escape sequence, 44
escaped, 29
evaluation
short-circuit, 64
exception
handling, 70
parameters, 71
exception handling, 70
exception parameters, 71
exceptional event, 70
execute, 19
exit
static multi-exit, 63
static multi-level, 65
exit, 40
exit status, 3, 24
explicit coercion, 56, 57
explicit conversion, 55, 94
export, 116, 117, 121
expression, 54
eye candy, 62

factory, 175
fail, 49, 51
false, 55
feof, 53
file, 3
.h, 97
opening, 49
file inclusion, 97
file management
file permission, 19
input/output redirection, 21
<, 21
>&, 21
>, 21
file permission
execute, 19
group, 19
other, 19
read, 19
search, 19
user, 19
write, 19
file suffix

.C, 41

.c, 41

.cc, 41, 120

.cpp, 41

.h, 120

.0, 117
file system, 3
files

input/output redirection, 21
find, 17, 45
find_first_not_of, 45
find_first_of, 45
find_last_not_of, 45
find_last_of, 45
fixed, 49
flag variable, 63
float, 42, 43
for, 32
for_each, 158
format

1/0, 49
formatted I/O, 48
Formatted 1/0O, 47
forward branch, 66
forward declaration, 96
forward slash, 4
frame, 179
free, 82
free, 82
friend, 133
friendship, 133, 139
fstream, 48
function-call operator, 130
functor, 130, 158
fusermount, 13

g++, 41,79
garbage collection, 82
gdb
backtrace, 178
break, 179
breakpoint, 179
continue, 181
next, 180
step, 180

193

194

continue, 181

frame, 179

info, 180

list, 181

next, 180

print, 178

run, 178

step, 180
gdb, 177
generalization, 169
git, 15
config

config, 15
git, 15

add, 160

clone, 16

commit, 161

mv, 165

pull, 16, 162

push, 161

remote, 160

rm, 163

status, 160
init

init, 160
GitAdvanced, 159
gitlab, 15
gitlab, 15
global repository, 15
globbing, 5, 16, 17, 19, 31
gmake, 184
goto, 66, 67

label, 66
graphical user interface, 1
gray-box testing, 122
group, 19

handler, 70

has-a, 138, 169, 171

heap, 83, 84, 91, 151
array, 83

help, 6

heterogeneous values, 80, 81

hex, 49
hidden file, 4, 10, 11, 17

CHAPTER 2. C++

high cohesion, 39
history, 7

home directory, 4, 5, 7
homogeneous values, 78
hot spot, 124

human testing, 122

I/0
cerr, 48
cin, 48
clear, 52
cout, 48
fail, 49
formatted, 48
fstream, 48
ifstream, 48
ignore, 52
iomanip, 49
iostream, 48
manipulators, 49
boolalpha, 49
dec, 49
endl, 49
fixed, 49
hex, 49
left, 49
noboolalpha, 49
noshowbase, 49
noshowpoint, 49
noskipws, 49
oct, 49
right, 49
scientific, 49
seffill, 49
setprecision, 49
setw, 49
showbase, 49
showpoint, 49
skipws, 49
ofstream, 48
identifier, 65
if, 30
dangling else, 60
ifstream, 48
ignore, 52

2.39. COMPILING COMPLEX PROGRAMS

implementation, 118
implementation inheritance, 137
implicit conversion, 55, 91, 94, 104
import, 116
info, 180
inheritance, 137, 149, 171
implementation, 137
type, 137, 139
init, 160
initialization, 89, 102—-104, 108, 109, 113,
138, 142
array, 89
forward declaration, 137
string, 90
structure, 89
inline, 98
input, 40, 47, 50
>>, 105
end of file, 51
eof, 51
fail, 51
feof, 53
formatted, 48
manipulators
iomanip, 49
noskipws, 49
skipws, 49
standard input
cin, 48
input/output redirection, 21
input
<, 21
output
>, 21
>&, 21
int, 42, 43
INT16_MAX, 43
INT16_MIN, 43
int16_t, 43
INT_MAX, 43
INT_MIN, 43
integral type, 81
interaction model, 167
interface, 100, 118
iomanip, 49

195

iostream, 40, 48
is-a, 139, 170, 171
iterator, 151

++, 151

--, 151

for_each, 158

keyword, 25
ksh, 1

label, 66

label variable, 65

language
preprocessor, 39
programming, 39
template, 39

left, 49

less, 10

list, 151, 156, 181
back, 157
begin, 157
clear, 157
empty, 157
end, 157
erase, 157
front, 157
insert, 157
pop_back, 157
pop_front, 157
push_back, 157
push_front, 157
begin, 157
end, 157
size, 157

literal, 43, 44, 51, 89
bool, 43
char, 43
designated, 44
double, 43
escape sequence, 44
initialization, 89
int, 43
string, 43
type constructor, 89
undesignated, 44

196

literals, 75
LLONG_MAX, 43
LLONG_MIN, 43
local repository, 160
login, 3
login shell, 26
logout, 3
long, 43
LONG_MAX, 43
LONG_MIN, 43
loop
mid-test, 62
multi-exit, 62
looping statement
break, 33
continue, 33
for, 32
while, 31
loose coupling, 39
low cohesion, 39
Is, 10, 19

machine testing, 122
main, 71, 97

make, 183

make, 184

malloc, 82

man, 9

managed language, 82

manipulators, 49
map, 151, 155
[], 155
begin, 155
count, 155
empty, 155
end, 155
erase, 155

find, 155
insert, 155
begin, 155
end, 155
size, 155
match, 70

matrix, 79, 84, 93, 153

member, 80

CHAPTER 2. C++

anonymous, 138
const, 113
constructor, 102
destruction, 106, 138, 142
initialization, 102, 138, 142
object, 101
operator, 102
overloading, 102
pure virtual, 147, 148
static member, 114
virtual, 144, 146
memberwise copy, 109
memory errors, 126
memory leak, 83, 84, 111, 126
mid-test loop, 62
mixin, 170
mkdir, 10
modularization, 67
more, 10
multi-exit
Multi-exit loop, 62
mid-test, 62
multi-level exit
static, 65
multiplicative recurrence, 129
mutually recursive, 96, 136
mv, 11, 165

name equivalence, 86, 140, 141, 149

namespace, 40, 87
std, 40

narrowing, 55

nesting, 138
blocks, 60
comments, 41
initialization, 89
preprocessor, 99
routines, 90
type, 85

new, 82

next, 180

noboolalpha, 49

non-contiguous, 106, 107

non-local transfer, 67

noshowbase, 49

2.39. COMPILING COMPLEX PROGRAMS

noshowpoint, 49
noskipws, 49
npos, 45

null character, 44
nullptr, 89

object, 99, 100
anonymous member, 138
assignment, 108, 142
const member, 113
constructor, 102, 138, 142
copy constructor, 108, 132, 142
default constructor, 103
destructor, 106, 138, 142
initialization, 103, 142
literal, 104
member, 101
pure virtual member, 147, 148
static member, 114
virtual member, 144, 146
object model, 167
object-oriented, 99, 137
observer, 173
oct, 49
ofstream, 48
open, 49
file, 49
operation, 168
operators
= 54
<<, 49, 105
>>, 49, 105
&, 54
arithmetic, 54
assignment, 54
bit shift, 54
bitwise, 54
cast, 54
comma expression, 54
control structures, 54
logical, 54
overloading, 49, 102
pointer, 54
relational, 54
selection, 86, 138

string, 45
struct, 54
selection, 137
other, 19
output, 40, 47, 50
<<, 105
endl, 40
formatted, 48
manipulators
boolalpha, 49
dec, 49
endl, 49
fixed, 49
hex, 49
iomanip, 49
left, 49
noboolalpha, 49
noshowbase, 49
noshowpoint, 49
oct, 49
right, 49
scientific, 49
seffill, 49
setprecision, 49
setw, 49
showbase, 49
showpoint, 49
standard error
cerr, 48
standard output
cout, 40, 48
overflow, 54
overload, 71
overloading, 49, 93, 102, 105
override, 138, 141, 144, 145
owns-a, 169

paginate, 10

parameter, 91
array, 93
constant, 92
default value, 92
pass by reference, 91
pass by value, 91
prototype, 96

197

198

parameter passing
array, 93
pass by reference, 91
pass by value, 91
pattern, 31, 172
pattern matching, 16
pimpl pattern, 133
pointer, 74, 76, 89
0, 89
array, 79, 83
matrix, 84
NULL, 89
nullptr, 89
polymorphic, 146
polymorphism, 140, 171
preprocessor, 39, 41, 97, 186
#define, 98
#elif, 99
#else, 99
#endif, 99
#if, 99
#ifdef, 99
#ifndef, 99
#include, 97
comment-out, 41
file inclusion, 97
variable, 98
print, 178
private, 131
project, 15
promotion, 55
prompt, 1, 2
$,2
%, 2
>, 5
protected, 131
prototype, 95, 96, 135
pseudo random-number generator, 129
pseudo random-numbers, 129
public, 80, 131
pull, 15
pull, 16, 162
pure virtual member, 147, 148
push, 15
push, 161

CHAPTER 2. C++

pwd, 7

queue, 151, 156
quoting, 5

random number, 129
generator, 129
pseudo-random, 129
seed, 130

random-number generator, 129

read, 19

real time, 9

realloc, 112

recurrence, 130

recursive type, 81

reference, 54, 74, 76
initialization, 77

reference parameter, 91

regular expressions, 16

reinterpret_cast, 57

relative pathname, 5

remote, 160

repetition modifier, 19, 25

replace, 45

reraise, 70

return code, 3, 68

return codes, 71

Return key, 2

reuse, 137

rfind, 45

right, 49

rm, 11, 163

robustness, 71

routine, 90
argument/parameter passing, 91
array parameter, 93
member, 101
parameter, 90

pass by reference, 91

pass by value, 91
prototype, 95, 135
routine overloading, 94
routine prototype

forward declaration, 96
scope, 101

2.39. COMPILING COMPLEX PROGRAMS

routine member, 80
routine prototype, 96
routine scope, 68
run, 178

scientific, 49
scope, 87, 101, 137
scp, 13
script, 23, 27
search, 19
sed, 23
selection operator, 86
selection statement, 60
break, 61
case, 31, 61
default, 61
if, 30
pattern, 31
switch, 61, 72
self-assignment, 112
semi-colon, 30
sentinel, 44
separate compilation, 99, 115
-c, 117
set, 155
setfill, 49
setprecision, 49
setw, 49
sh, 1,23
sh, 9
sha-bang, 23
shadow, 60
shell, 1
bash, 1, 29
csh, 1, 29
ksh, 1
login, 26
prompt, 2
$,2
%, 2
>, 5
sh, 1
tcsh, 1
shell program, 23
shift, 25

short, 43
short-circuit, 29
showbase, 49
showpoint, 49
SHRT_MAX, 43
SHRT_MIN, 43
signature, 96
signed, 43
single quote, 5
singleton, 172
size_type, 45
skipws, 49
slicing, 146
software development
.cc, 120
.h, 120
.0, 117
separate compilation
objects, 119
routines, 115
source, 28
source file, 96, 131
source-code management, 14
source-code management-system, 14
ssh, 13
sshfs, 13
stack, 59, 91
stack, 151, 156
stack allocation, 84
static, 135
static block, 90, 114
static exit
multi-exit, 63
multi-level, 65
Static multi-level exit, 65
static_cast, 55
status, 160
std, 40
stderr, 48
stdin, 48
stdout, 48
step, 180
strcat, 45
strcpy, 45
strcspn, 45

199

200 CHAPTER 2. C++

stream <, 45
cerr, 48 <=, 45
cin, 48 =, 45
clear, 52 ==, 45
cout, 48 >, 45
fail, 49 >=, 45
formatted, 48 [1, 45
fstream, 48 c_str, 45
ifstream, 48 find, 45
ignore, 52 find_first_not_of, 45
input, 40 find_first_of, 45
cin, 48 find_last_not_of, 45
end of file, 51 find_last_of, 45
eof, 51 npos, 45
fail, 51 replace, 45
manipulators rfind, 45
boolalpha, 49 size_type, 45
dec, 49 substr, 45
endl, 49 C
fixed, 49 (1,45
hex, 49 strcat, 45
iomanip, 49 strcpy, 45
left, 49 strcspn, 45
noboolalpha, 49 strlen, 45
noshowbase, 49 strncat, 45
noshowpoint, 49 strncpy, 45
noskipws, 49 strspn, 45
oct, 49 strstr, 45
right, 49 null termination, 44
scientific, 49 stringstream, 53, 72
seftfill, 49 strlen, 45
setprecision, 49 strncat, 45
setw, 49 strncpy, 45
showbase, 49 strong safety, 71
showpoint, 49 strspn, 45
skipws, 49 strstr, 45
ofstream, 48 struct, 100, 131
output, 40 structurally equivalent, 86
cout, 40 structure, 74, 80, 89, 100
endl, 40 member, 80, 100
stream file, 48 data, 80
string, 43, 45 routine, 80
C+H visibility
I=, 45 default, 80

+, 45 public, 80

2.39. COMPILING COMPLEX PROGRAMS

struct, 54
subshell, 9, 23, 27
substitutability, 171
substr, 45
suffix
.C, 41
.c, 41
.cc, 41
.cpp, 41
switch, 61, 72
break, 61
case, 61
default, 61
system command, 183
system time, 9

tab key, 2

tcsh, 1

tcsh, 9

template, 39, 149
routine, 149
type, 149

template method, 173

template routine, 149

template type, 149

terminal, 1

test, 29

test harness, 123

testing, 122
black-box, 122
gray-box, 122
harness, 123
human, 122
machine, 122
white-box, 122

text merging, 15

this, 101

tight coupling, 69

time, 9

time stamp, 183

translation unit, 115

true, 55

type, 8

type aliasing, 86

type coercion, 57

type constructor, 74
array, 78
enumeration, 75, 98
literal, 89
pointer, 76
reference, 76
structure, 80
type aliasing, 86
union, 81
type conversion, 55, 94, 104, 146
type equivalence, 140, 141
type inheritance, 137, 140
type nesting, 85
type qualifier, 42, 43, 77
const, 44, 77
long, 43
short, 43
signed, 43
static, 135
unsigned, 43
type-constructor literal
array, 89
pointer, 89
structure, 89
typedef, 86, 88

UINT8_MAX, 43

uint8_t, 43

UINT_MAX, 43
ULLONG_MAX, 43
ULONG_MAX, 43
undesignated, 44
unformatted 1/0, 57
Unformatted 1/0, 47
unified modelling language, 167
uninitialization, 106
uninitialized, 91
uninitialized variable, 83
union, 81

unmanaged language, 82
unsigned, 43

user, 19

user time, 9
USHRT_MAX, 43

using

201

202 CHAPTER 2. C++

declaration, 88 write, 19

directive, 88
xterm, |

valgrind, 126
value parameter, 91
variable declarations
type qualifier, 42, 43
variables
constant, 45
dereference, 54
reference, 54
vector, 151, 152
[], 152
at, 152
begin, 152
clear, 152
empty, 152
end, 152
erase, 152
insert, 152
pop_back, 152
push_back, 152
rbegin, 152
rend, 152
resize, 152, 154
size, 152
version control, 14
virtual, 144, 146
virtual members, 144, 146-148
visibility, 85
default, 80
private, 131
protected, 131
public, 80, 131
void =, 83

zero-filled, 89

wchar_t, 42

which, 8

while, 31

white-box testing, 122, 123
whitespace, 41, 51

widening, 55

wildcard, 16

working directory, 4, 6, 7, 10, 16
wrapper member, 143

	Title
	Contents
	Shell
	File System
	Quoting
	Shell Commands
	System Commands
	Source-Code Management
	Global Repository
	Local Repository

	Pattern Matching
	File Permission
	Input/Output Redirection
	Script
	Shift
	Shell Variables
	Arithmetic
	Routine
	Control Structures
	Test
	Selection
	Looping

	Examples
	Hierarchical Print Script
	Cleanup Script

	C++
	Design
	C/C++ Composition
	First Program
	Comment
	Declaration
	Basic Types
	Variable Declaration
	Type Qualifier
	Literals
	C++ String

	Input/Output
	Formatted I/O
	Formats
	Output
	Input

	Expression
	Conversion
	Coercion

	Unformatted I/O
	Math Operations
	Control Structures
	Block
	Selection
	Multi-Exit Loop (Review)
	Static Multi-Level Exit
	Non-local Transfer
	Dynamic Multi-Level Exit

	Command-line Arguments
	Type Constructor
	Enumeration
	Pointer/Reference
	Aggregates
	Array
	Structure
	Union

	Dynamic Storage Management
	Type Nesting
	Type Equivalence
	Namespace
	Type-Constructor Literal
	Routine
	Argument/Parameter Passing
	Array Parameter

	Overloading
	Declaration Before Use, Routines
	Preprocessor
	File Inclusion
	Variables/Substitution
	Conditional Inclusion

	Object
	Object Member
	Operator Member
	Constructor
	Literal
	Conversion

	Destructor
	Copy Constructor / Assignment
	Initialize const / Object Member
	Static Member

	Separate Compilation, Routines
	Separate Compilation, Objects
	Testing
	Assertions
	Debugging
	Debug Print Statements

	Valgrind
	Random Numbers
	Encapsulation
	Declaration Before Use, Objects
	Inheritance
	Implementation Inheritance
	Type Inheritance
	Constructor/Destructor
	Copy Constructor / Assignment
	Overloading
	Virtual Routine
	Downcast
	Slicing
	Protected Members
	Abstract Class

	Template
	Standard Library
	Vector
	Map
	List
	for_each

	Git, Advanced
	Gitlab Global Setup
	Git Local Setup
	Modifying
	Conflicts

	UML
	Composition / Inheritance Design
	Design Patterns
	Singleton Pattern
	Template Method
	Observer Pattern
	Decorator Pattern
	Factory Pattern

	Debugger
	GDB

	Compiling Complex Programs
	Dependencies
	Make

	Index

