Assignment 1

Due by Friday, May 18 before 11:59pm

Acknowledgments. Acknowledge all the sources you used to complete the assignment. DO NOT COPY! Please read http://www.student.cs.uwaterloo.ca/~cs341 for general instructions and policies. In the assignments, all logarithms are base 2, unless a different base is explicitly specified.

1 Asymptotics [10 marks]

Prove or disprove each of the following statements.

(a) For any constant $b > 0$, the function $f : n \mapsto 1 + b + b^2 + b^3 + \cdots + b^n$ satisfies

$$ f(n) = \begin{cases}
\Theta(b^n) & \text{if } b > 1 \\
\Theta(1) & \text{if } b \leq 1.
\end{cases} $$

(b) For every pair of functions $f, g : \mathbb{Z}^+ \to \mathbb{R}^+$ that satisfy $f = \Theta(g)$, the functions $F : n \mapsto 2^{f(n)}$ and $G : n \mapsto 2^{g(n)}$ also satisfy $F = \Theta(G)$.

(c) For every pair of functions $f, g : \mathbb{Z}^+ \to \mathbb{R}^+$ that satisfy $f = o(g)$, the functions $F : n \mapsto 2^{f(n)}$ and $G : n \mapsto 2^{g(n)}$ also satisfy $F = o(G)$.

2 Solving recurrences [10 marks]

Solve the following recurrence relations to obtain a closed-form big-Θ expression for $T(n)$. In each question, assume $T(c)$ is bounded by a constant for any small constant c.

(a) $T(n) \leq 9T\left(\frac{n}{3}\right) + n^2$

(b) $T(n) \leq 4T\left(\frac{n}{4}\right) + n \log n$

(c) $T(n) \leq T\left(\frac{n}{4}\right) + T\left(\frac{3n}{4}\right) + n$

(d) $T(n) \leq \sqrt{n} \cdot T(\sqrt{n}) + n$

Hint. The correct expression is somewhere between $\Omega(n)$ and $O(n \log n)$.

1
3 Testing primality [10 marks]

Analyze the time complexity of the following pseudocode in terms of \(n \) using big-\(O \) notation. For this analysis, each operation on integers (including multiplication and squaring) takes constant time.

Algorithm 1: IsPrime(\(n \))

\[
\begin{align*}
j &\leftarrow 2; \\
\text{while } j^2 \leq n \text{ do} & \\
& \quad k \leftarrow 2; \\
& \quad \text{while } j \times k \leq n \text{ do} \\
& \quad \quad \text{if } j \times k = n \text{ then} \\
& \quad \quad \quad \text{return } \text{False}; \\
& \quad \quad k \leftarrow k + 1; \\
& \quad j \leftarrow j + 1; \\
\text{return } \text{True};
\end{align*}
\]

4 Common sum [10 marks]

In the Common Sum problem, we are given two arrays \(A \) and \(B \) of length \(n \) containing non-negative (not necessarily distinct) integers, and we must determine whether there are indices \(i_1, i_2, j_1, j_2 \in \{1, 2, \ldots, n\} \) for which

Design an algorithm that solves the Common Sum problem and has time complexity \(O(n^2 \log n) \) in the setting where operations on individual integers take constant time.

Your solution must include a description of the algorithm in words, the pseudocode for the algorithm, a proof of its correctness, and an analysis of its time complexity in big-\(\Theta \) notation.

5 Programming question [10 marks]

Implement the algorithm you obtained for the Common Sum problem in Question 4.

Input and output. The input consists of \(n + 1 \) lines. The first line contains an integer value \(n \geq 1 \). The following \(n \) lines have two integer values each: \(A[i] \) and \(B[i] \) for \(i = 1, 2, \ldots, n \). We will not be testing whether your program detects input errors. However, our tests will check that your algorithm is fast enough.

The output must have 1 line that contains TRUE or FALSE.
Sample input 1

4
1 2
7 8
5 6
3 4

Sample output 1

TRUE

Sample input 2

7
5 16
15 6
25 21
20 31
20 16
10 11
0 1

Sample output 2

FALSE

The valid solution for the second instance is **FALSE** because there are no values of \(i_1, i_2, j_1, j_2 \in \{1, 2, \ldots, n\} \) for which \(A[i_1] + A[i_2] = B[j_1] + B[j_2] \).