Assignment 3

Due by Friday, June 15

Acknowledgments. Acknowledge all the sources you used to complete the assignment. DO NOT COPY! Please read http://www.student.cs.uwaterloo.ca/~cs341/ for general instructions and policies.

For all algorithm design questions, you must give the algorithm, argue the correctness, and analyze time complexity.

1 Longest common subsequence of many strings [10 marks]

Recall that a string \(z = z_1 z_2 \cdots z_k \) is a subsequence of a string \(x = x_1 x_2 \cdots x_n \) if there are indices \(1 \leq i_1 < i_2 < \cdots < i_k \leq n \) for which \(z_1 = x_{i_1}, z_2 = x_{i_2}, \ldots, z_k = x_{i_k} \). The string \(z \) is a common subsequence of a set of \(m \) strings \(x^{(1)}, x^{(2)}, \ldots, x^{(m)} \) if and only if \(z \) is a subsequence of all \(m \) of these strings. For example, the string ONI is a common subsequence of the 3 strings

\[
\begin{align*}
 x^{(1)} &= \text{POLYNOMIAL} \\
 x^{(2)} &= \text{EXPONENTIAL} \\
 x^{(3)} &= \text{CONSTANTTIME}
\end{align*}
\]

but the string PAL is not.

Design an dynamic programming algorithm that, given as input a set of \(m \) strings \(x^{(1)}, x^{(2)}, \ldots, x^{(m)} \) of lengths \(n_1, \ldots, n_m \), respectively, outputs the length of the longest common subsequence of \(x^{(1)}, x^{(2)}, \ldots, x^{(m)} \).

2 Bookshelf [10 marks]

In the LibraryBookshelf problem, you are given as input a set of \(n \) books and the thickness \(t_i > 0 \) of each book \(i \in \{1, 2, \ldots, n\} \), along with the width \(W \) of the bookshelves that will be used to build the library.

Design a greedy algorithm that determines the minimum number of bookshelves required to store the books, keeping in mind that since the books have call numbers, you must place them in order in the bookshelves, but that you can choose how many go on a shelf.
3 Hiring [10 marks]

In the Hiring problem, you own two companies that have salary budgets $B_1 > 0$ and $B_2 > 0$, respectively. There are n people $1, 2, \ldots, n$ applying to work at one of your companies, where person i requires salary s_i and would generate revenues $r_1(i) > 0$ and $r_2(i) > 0$ to companies 1 and 2, respectively.

A valid solution to the Hiring problem is the maximum value R for which there exists a pair of disjoint sets $S_1, S_2 \subseteq \{1, 2, \ldots, n\}$ that satisfy

(i) $\sum_{i \in S_1} s_i \leq B_1$,
(ii) $\sum_{i \in S_2} s_i \leq B_2$, and
(iii) $\sum_{i \in S_1} r_1(i) + \sum_{i \in S_2} r_2(i) = R$.

Design a dynamic programming algorithm to solve the Hiring problem. (Note that to solve the problem, the algorithm needs to find the maximum revenue R as described above, but it does not need to identify the sets S_1 and S_2.) In your description of the algorithm, make sure you clearly indicate what are the subproblems and the order in which they are solved. Also: your time complexity analysis should be in terms of n, B_1, and B_2.

4 Scriptio continua [10 marks]

Let $\Sigma = \{a, b, c, \ldots, z\}$ denote the alphabet, and let $S \subseteq \Sigma^*$ be the set of all words in the English language. In the ScriptioContinua problem, you are given a string $s \in \Sigma^n$ (that does not have any spaces or punctuation marks) and you must output True if there exists a sequence of words $w_1, \ldots, w_m \in S$ such that $s = w_1w_2 \cdots w_m$ is the concatenation of the words w_1, \ldots, w_m, and False otherwise.

For example, for the input

$s = \text{this string is a sequence of words written without any spaces}$

the valid solution is True since we can partition s into the sequence of 11 words

$s = \underbrace{\text{this }}_{w_1} \underbrace{\text{string is a sequence of words written without any spaces}}_{w_2}$

with $w_1, w_2, \ldots, w_{11} \in S$.

1. Design a dynamic programming algorithm for solving the ScriptioContinua problem. In your solution, you can assume that you have access to an algorithm IsWord that, on any input $w \in \Sigma^l$, outputs True if $w \in S$ and False otherwise, and has time complexity $\Theta(1)$. You should aim for an algorithm with runtime $O(n^2)$.

2. Modify the algorithm in part (a) so that when the answer is True, the algorithm also outputs $w_1, \ldots, w_m \in S^m$ for which $s = w_1w_2 \cdots w_m$.

5 Shipping paper [10 marks]

Note: For this assignment only, you do not need to program your solution to the problem; only the written solution needs to be submitted.

There are two warehouses, V and W, which ship supplies of paper to n factories, denoted F_1, \ldots, F_n. The factory F_i requires exactly d_i units of paper, it costs v_i to ship a unit of paper from V to F_i, and it costs w_i to ship a unit of paper from W to F_i, for each $i \in \{1, 2, \ldots, n\}$. The total amount of paper available at V and W is r_V and r_W, respectively, where $r_V + r_W = d_1 + \cdots + d_n$.

We want to determine how much paper to ship from V and W to each of the factories so that the total shipping cost is minimized. Formally, let x_i denote the number of units of paper that are shipped from V to F_i and y_i denote the units of paper that are shipped from W to F_i, for $1 \leq i \leq n$. The following constraints must be satisfied:

- $x_1, \ldots, x_n, y_1, \ldots, y_n$ are non-negative integers,
- $x_1 + \cdots + x_n = r_V,$
- $y_1 + \cdots + y_n = r_W,$ and
- $x_i + y_i = d_i$ for each $i \in \{1, 2, \ldots, n\}$.

The total shipping cost is

$$C = \sum_{i=1}^{n} (v_i x_i + w_i y_i).$$

An instance of the Shipping problem is specified by the values r_V, r_W, d_1, \ldots, d_n, v_1, \ldots, v_n, and w_1, \ldots, w_n. A valid solution to such an instance is an n-tuple (x_1, \ldots, x_n) that satisfies the constraints above and minimizes C. (Since the value of x_i determines the value of y_i uniquely for each $i \in \{1, 2, \ldots, n\}$, the n-tuple (y_1, \ldots, y_n) does not need to be provided explicitly in the solution.)

Design a greedy algorithm that solves the Shipping problem.