Graph Algorithms

Graph $G = (V, E)$
- V - vertices (nodes) $|V| = n$
- $E \subseteq V \times V$ - edges $|E| = m$

Edges can be undirected (unordered pairs) or directed (ordered pairs).

Examples

- Directed graph
 - $V = \{a, b, c\}$
 - $E = \{(a, b), (b, c), (a, c), (c, a)\}$

- Undirected graph
 - $V = \{a, b, c, d, e\}$
 - $E = \{(a, b), (a, c), (a, e)\}$

Basic Notions

- $u, v \in V$ are adjacent or neighbours if $(u, v) \in E$
- $u \in V$ is incident to $e \in E$ if $u \overset{e}{\rightarrow} v$
- $\deg(v) = \#$ incident edges

- For directed graph $\text{indegree}(v)$, $\text{outdegree}(v)$
 - $\text{indeg}: 2$, $\text{outdeg}: 3$
• a path is a sequence of vertices \(v_1, v_2, \ldots, v_k \) s.t. \((v_i, v_{i+1}) \in E\) \(i = 1, \ldots, k-1\) a simple path does not repeat vertices.

• a cycle is a path that starts and ends at the same vertex. undirected

• a tree is a connected graph without cycles undirected

• a graph is connected if every \(u, v \in V \) are joined by a path

• connected component of a graph = maximal connected subgraph

\[\begin{tikzpicture}[scale=0.8]
 \node (1) at (0,0) {1};
 \node (2) at (1,0) {2};
 \node (3) at (1,1) {3};
 \node (4) at (0,1) {4};
 \node (5) at (2,0) {5};
 \node (6) at (2,1) {6};
 \draw (1) -- (2) -- (3) -- (4) -- (5) -- (6) -- (1);
\end{tikzpicture} \]

3 connected components.

History: Euler, Königsberg bridge problem 1735

Applications - many:
• networks: wireless, transportation, social
• web pages, game configurations etc
Storing Graphs

- **Adjacency matrix**
 \[A[i,j] = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases} \]

 \(O(n^2)\) space, even if the graph is sparse, \(|E| \ll n^2\)

 But a query “is \((i,j)\) an edge?” can be answered in \(O(1)\)

- **Adjacency lists**
 For each vertex \(v\), store linked list of \(v\)’s neighbours

 ![Graph diagram]

 \(a \rightarrow b, c\)
 \(b \rightarrow c\)
 \(c \rightarrow a\)

 \(O(n+m)\) space

 A query “is \((i,j)\) an edge?” requires traversing \(i\)’s adjacency list, \(O(n)\) worst case

Sometimes graphs are stored implicitly, e.g., nodes may represent configurations in a chess game.
Generate nodes as you search configuration space.

Can use hash table of adjacency lists to get space \(O(n+m)\) and \(O(1)\) test for edge.
Exploring Graphs — visit all nodes, or all nodes reachable from some "source"

Further — find shortest paths, connected components

Breadth First / Depth First Search

BFS

Cautious search: check everything one edge away, then two...

order in which vertices are discovered

1, 2, 3, 6, 8, 4, 5, 7

1's neighbours 2's 5's

BFS tree

Use a queue to store vertices that have been discovered but must still be explored

Vertices are marked:

undiscovered => discovered
Explore (v)
 for each neighbour u of v
 - if mark(u) = undiscovered
 mark(u) ← discovered
 parent(u) ← v
 level(u) ← level(v) + 1
 add u to Queue
 end

BFS
initialize: mark all vertices undiscovered
pick initial vertex v₀, parent(v₀) ← ∅, level(v₀) = 0
add v₀ to Queue, mark(v₀) ← discovered
while Queue not empty
 v ← remove from Queue
 Explore(v)
end

Also useful to store parent and level (see previous example) See blue additions above.

BFS takes $O(n + m)$ time — we explore each vertex once and check all incident edges.

time is $O(n + \sum_{v} \deg(v)) = O(n + m)$.

Note: $\sum_{v} \deg(v) = 2m$
because we count each edge twice.
Properties of BFS

- the parent pointers create a directed tree (because each addition adds a new vertex \(u \) with parent \(v \) in the tree)

- \(u \) is connected to \(v_0 \) iff BFS from \(v_0 \) reaches \(u \). Stronger:

Lemma: the shortest path from \(v_0 \) to \(u \) has length (\#edges) \(k \) iff BFS from \(v_0 \) puts \(u \) in level \(k \).

Proof by induction with basis \(k = 0 \)

\(\Rightarrow \) Suppose \(u \) in level \(k \). Then parent \((u) = v \) is in level \(k-1 \). So shortest path \(v_0 \) to \(u \) has length \(k-1 \) by induction. There is a path \(v_0 \) to \(u \) of length \(k \). Is it shortest? Yes, otherwise (by induction) \(u \) would be in a level \(< k \).

\(\Leftarrow \) Suppose shortest path is \(v_0, v_1, \ldots, v_{k-1} = u \) then \(v_0, v_1, \ldots, v_{k-1} \) is a shortest path of length \(k-1 \). So \(v_{k-1} \) goes in level \(k-1 \). Then \(u \) (a neighbour of \(v_{k-1} \)) goes in level \(\leq k \). Could \(u \) go in level \(< k \)? No, otherwise (by ind.) there would be a shorter path to \(u \).
Consequences:
1. BFS from v_0 finds the connected component of v_0.

 \text{Ex.} Enhance BFS to find all connected components in time $O(n + m)$
2. BFS finds shortest paths (#edges) from v_0.

\text{Ex.} Use BFS to find if a connected graph has a cycle.

\text{Ex.} Prove that if $(u, v) \in E$ then $\text{level}(u), \text{level}(v)$ differ by 0 or 1.

BFS to test bipartiteness

G is bipartite if V can be partitioned into $V_1 \cup V_2$ ($V_1 \cap V_2 = \emptyset$) s.t. every edge has one end in V_1 and one end in V_2.

Note that a bipartite graph cannot have an odd cycle.
Run BFS. \(V_1 = \text{odd levels} \quad V_2 = \text{even levels} \).

Test if this works (check edges)
- if YES \(\rightarrow \) \(G \) is bipartite
- if NO then there is an edge \((u,v)\) with
 \(u,v \) both in \(V_i \) \((i = 1 \text{ or } 2) \)
 By Ex. level \((u)\) and level \((v)\) differ by 1 or 0.
 If 1, then one in \(V_1 \), one in \(V_2 \).
 So \(u,v \) are in same level, say \(k \).

 Let \(z = \text{least common ancestor of } u,v \).

 Cycle formed by path \((u,z)\) path \((z,v)\) \((u,v)\)
 has length \(2t + 1 \) — odd

 Then \(G \) is not bipartite.

 This proves:

\underline{Lemma} \(G \) is bipartite iff it has no odd cycle.

the proof is via an algorithm that finds
a bipartition or an odd cycle.