DFS

Depth first search — go as far as you can, when there’s nothing new to discover, retrace your steps to find something new.

DFS tree

Order in which vertices are discovered: a, b, e, f, g, d, c

Order of finishing: f, g, e, c, d, b, a

Use a stack to store vertices that have been discovered but must still be explored.

As a recursive program (stack is implicit):

$$\text{DFS}(v)$$

- or Explore(v)

1. mark(v) \leftarrow discovered
2. for each neighbour u of v do
 - if u is undiscovered then
 - mark(u) \leftarrow discovered
 - DFS(u), parent(u) \leftarrow v; (u,v) is a tree edge
 - else (u,v) is a non-tree edge, unless $u = \text{parent}(v)$
3. mark(v) \leftarrow finished

DFS

Mark all vertices undiscovered

for all vertices v

- this handles multiple components

 if v is undiscovered

 - start new tree rooted at v

 - DFS(v)
As with BFS, we should store more info as we do this:
Store parent pointers, distinguish tree edges and non-tree edges (see changes above)

Run-time: \(O(n+m)\) (same argument as for BFS)

DFS gives rich structure:
- partition into separate trees
- Edge classification
- Vertex order: order of discovery, order of finishing

Lemma DFS from root vertex \(v_0\) discovers all vertices connected to \(v_0\)

Proof Suppose there is a path \(v_0 \to v_1 \cdots \to v_f\)
Look at last vertex discovered \(v_f\)
Then we explore all neighbours of \(v_i\) including \(v_{i+1}\)
(more formal by induction)

EX. Enhance code to number the connected components and record the component of each vertex

Lemma All non-tree edges join ancestor and descendant.
\[u \text{ is an ancestor of } v \]
\[u \text{ is a descendant of } v \]

Cannot have edge \((x, y)\).

Suppose \(x\) discovered first.

Then in \(\text{DFS}(x)\) we examine neighbour \(y\).

So \(y\) is discovered before \(x\) finishes and \(y\) appears in subtree of \(x\).

Enhancing \(\text{DFS} \) to compute discover \& finish times:

\[\text{DFS}(u) \]

\[
\text{mark}(u) \leftarrow \text{discovered}
\]
\[
\text{discover}(u) \leftarrow \text{time} ; \; \text{time} \leftarrow \text{time} + 1
\]

for each neighbour \(u\) of \(v\) do

\[
\text{if } u \text{ is undiscovered then}
\]
\[
\text{DFS}(u)
\]

end

\[
\text{finish}(u) \leftarrow \text{time} ; \; \text{time} \leftarrow \text{time} + 1
\]

Let \(d(u) = \text{discover}(u)\), \(f(u) = \text{finish}(u)\).

Discover \& finish times form a parenthesis system.

If \(d(u) < d(v)\) then
\[
\begin{bmatrix}
\begin{bmatrix}
d(u) & d(u) & f(u) & f(u)
\end{bmatrix}
\end{bmatrix}
\]

or
\[
\begin{bmatrix}
\begin{bmatrix}
d(u) & f(u) & d(u) & f(u)
\end{bmatrix}
\end{bmatrix}
\]

because interval \(d(u), f(u)\) is time on stack.
DFS to find 2-connected components

This graph is connected but removing one vertex b or e disconnects it.

\(v \) is a cut vertex if removing \(v \) makes \(G \) disconnected. Cut vertices are bad in networks.

Biconnected components

DFS from \(e \)

DFS from a shown before

Claim: The root is a cut vertex iff it has \(>1 \) child.

Lemma: non-root \(v \) is a cut vertex iff \(v \) has a subtree \(T \) with no non-tree edge going to an ancestor of \(v \).

Proof \(\leq \) removing \(v \) separates \(T \) from rest of graph.

\(\Rightarrow \) since removing \(v \) disconnects \(G \), some subtree must get disconnected
Define

\[\text{low}(u) = \min \{ d(w) : x \text{ a descendant of } u, (x,w) \text{ an edge} \} \]

Note: it does not hurt to look at all edges, not just non-tree edges.

Note: non-root \(u \) is a cut vertex iff \(u \) has child \(v \) with \(\text{low}(u) \geq d(v) \)

We can compute \(\text{low} \) recursively

\[\text{low}(u) = \min \{ \min \{ d(w) : (u,w) \in E \}, \min \{ \text{low}(x) : x \text{ a child of } u \} \} \]

Algorithm to compute all cut vertices:

- can enhance DFS code to compute \(\text{low} \)
- or:

 run DFS to compute discover times, \(d(\cdot) \) for every vertex \(u \) in finish time order

 for every \(u \)

 if \(u \) has a child \((u) \) with \(\text{low}(u) \geq d(v) \)

 then \(u \) is a cut node.

Also handle the root.