Recall Minimum Spanning Tree Problem.

Last day:
Kruskal's Algorithm & implementation \(O(m \log n)\)

Prim's Algorithm.
Grow one connected component in a greedy fashion (i.e. by adding min. weight edge leaving the component)

\[C \subseteq V \]

Choose min. weighted edge leaving \(C \)

\(C = \) set of vertices reached by \(T \) so far

Initialize \(C \leftarrow \emptyset \), \(T \leftarrow \emptyset \)

While \(C \neq V \)

Find min. weight edge \(e = (u, v) \) from

\(u \in C \) to \(v \in V \setminus C \)

\(T \leftarrow T \cup \{ e \} \)

\(C \leftarrow C \cup \{ v \} \)

End

Correctness: The exact same exchange argument works. And in fact, we could prove one lemma that gives correctness of both alg.s. (See text.)
Prim – implementation.

In general, we need to find min weight edge leaving \(C \), the connected component of \(T \).

Priority Queue data structure

Maintain set of weighted elements (in our case) edges leaving \(C \)

Operations

- Find and delete min weight element
- Insert
- Delete

Can be implemented as a heap (see CS 240 or text) at \(O(\log k) \) time per operation, \(k = \# \) elements

In our case

\[\delta(C) = \text{edges leaving } C \]

Changes to \(\delta(C) \) when \(v \) is added to \(C \):

- Edges from \(C \) to \(v \) leave \(\delta(C) \)
- Other edges adjacent to \(v \) enter \(\delta(C) \)

We can find these edges by going through \(v \)’s adjacency list.

Each edge enters \(\delta(C) \) once and leaves it once.
Priority Queue operations

- n-1 find min
- m insert
- m delete

Total cost:

\[O(n \log m + m \log m) = O(m \log n) \]

\[\uparrow \uparrow \]

Find, Insert, Delete

It is slightly more efficient to keep a priority queue of vertices \(V \sim C \) with weight \(\text{weight}(v) = \text{min weight edge from } C \text{ to } v \)

- size of PQ = \(n \)
- update is key-change \(O(\log n) \)
- still gives \(O(m \log n) \) total.

Additional improvement

- use Fibonacci heap to implement PQ
- then decrease key is \(O(1) \)

so we get

\[O(n \log n + m) = O(m + n \log n) \]

\[\text{find} \quad \text{decrease key} \quad (\text{key change}) \]
Shortest Paths in Edge Weighted Graphs

Recall that BFS from \(v \) finds shortest paths from \(v \) in unweighted undirected graphs.

General input: directed graph with weights on edges.

Note: An represent undirected edge as 2 directed edges

\[
\begin{align*}
 \text{Shortest path } A - D \text{ is } ABD, \text{ weight 5.} \\
 A - E \quad ABE, \text{ weight 4.}
\end{align*}
\]

We will sometimes allow negative weights but we'll assume no negative weight cycle (otherwise go around it \(\infty \) to get \(-\infty \) length.)

[Note: we might still want a shortest path that is simple (doesn't repeat vertices) but that's NP-complete)

Versions of the problem:

1. Given \(u, v \), find shortest \(u \rightarrow v \) path
2. Given \(u \), find shortest \(u \rightarrow v \) path \(\forall v \)
 "single source shortest path problem"
3. Find shortest \(u \rightarrow v \) path \(\forall u, v \)
 "all pairs shortest path problem"

Solving 1 seems to involve solving 2.
But we can solve 2 faster than 3.
Start with 2. Do 3 later (dynamic programming)
Single Source Shortest Paths in Directed Graphs
- general weights (but no neg. cycle) \(O(mn) \)
 - Bellman Ford
- no cycles \(O(n+m) \)
- no negative weights \(O(m \log n) \)
 - Dijkstra's algorithm

Dijkstra's Algorithm 1959

Input: digraph \(G = (V,E) \), \(w : E \to \mathbb{R}^\geq \), \(s \in V \)
 - non-neg edge weights
 - source

Output: shortest path from \(s \) to every other vertex \(v \).

Idea: Grow tree of shortest paths starting from \(s \)

General step: have tree of shortest paths to all vertices in set \(B \)

Initially \(B = \{s\} \)

Choose edge \((x, y) \in B \), \(y \notin B \)

to minimize \(d(s, x) + w(x, y) \)

\(d(s, y) \leftarrow d \)

add \((x, y) \) to tree (Parent(y) \(\leftarrow x \))

Note similarity & differences to Prim's MST alg.
This is greedy in the sense that we always add the vertex with next min distance from s.

Claim: \(d \) is the min. distance from \(s \) to \(y \).

[This justifies the output being a tree]

Proof: Any path \(\Pi \) from \(s \) to \(y \) consists of
- \(\Pi_1 \): initial part of path in \(B \)
- \((u,v) \): first edge leaving \(B \)
- \(\Pi_2 \): rest of path.

\[
\begin{align*}
 w(\Pi) &\geq w(\Pi_1) + w((u,v)) \\
 &\geq d(s,u) + w(u,v) \\
 &\geq d
\end{align*}
\]

using that \(w(\Pi_2) \geq 0 \)

- the proof breaks down for neg. weight cycles

Therefore, by induction on \(|B| \), the alg. correctly finds \(d(s,v) \) for all \(v \).

Implementations

- want to choose edge leaving \(B \) to minimize some value
- could make a heap of edges \((x,y) \in E \), \(x \in B \), \(y \notin B \)
 where \(value(x,y) = d(s,x) + w(x,y) \)
 This heap has size \(O(n) \)
- more efficient: a heap of vertices
Keep "tentative distance" \(d(v) \) \(\forall v \neq s \)
\(d(s) = 0 \)
\(B = \emptyset \)

While \(|B| < n \)

1. \(y \leftarrow \text{vertex of } V \setminus B \text{ with min. } d \text{ value - from heap} \)
2. \(B \leftarrow B \cup \{y\} \) -- note that \(d(y) \) is true distance

For each edge \((y,z)\) do

1. if \(d(y) + w(y,z) < d(z) \) then
2. \(d(z) \leftarrow d(y) + w(y,z) \) -- and update heap
3. \(\text{Parent}(z) \leftarrow y \)

End

End

Store \(d \) values in a heap. Size is \(\leq n \)

Modifying a \(d \) value takes \(O(\log n) \) to adjust heap.

Total time \(O(n \log n + m \log n) = O(m \log n) \)

Actually, there is a fancier "Fibonacci heap" that gives \(O(n \log n + m) \) see CLRS