P and NP.

Definition

\[P = \{ \text{decision problems solvable in poly. time}\} \]

We will study what is/is not in this class.

Careful of

- machine model - log cost RAM
- input size - # bits

Recall from last day:

\[A \leq_p B \text{ for problems } A, B \quad \text{“} A \text{ reduces to } B \text{”} \]

means: we can use a poly. time algorithm for B
to give a poly. time algorithm for A.

Example.

Hamiltonian cycle/path = cycle/path
that visits every vertex exactly once

This graph has a Hamiltonian path
but not a Hamiltonian cycle.

Lemma Hamiltonian path \(\leq_p \) Hamiltonian cycle.

Pf. Suppose we have a poly. time algorithm for Hamiltonian cycle.

We want to design a poly. time algorithm for Hamiltonian path.
Input: graph G.
Algorithm:
- Construct graph G' by adding one new vertex adjacent to all vertices of G.
 \[G' \] \[\hat{G} \] \[v \]
- Send G' to the algorithm to test for Hamiltonian cycle.
- Return the YES/NO answer.

This algorithm runs in polynomial time.

Correctness: must prove

Claim: G has a Hamiltonian path iff G' has a Hamiltonian cycle.

Proof (\Rightarrow): Suppose G has a Hamiltonian path x to y.
Adding v and edges (x,v), (v,y) gives a Hamiltonian cycle in G'.

(\Leftarrow): Suppose G' has a Hamiltonian cycle. Removing v gives a Hamiltonian path in G.

Lemma Hamiltonian cycle \leq_p Hamiltonian path

Ex. prove this.

Fact: no one knows a polynomial time alg. for either problem.
There is a large class of decision problems not known to be in \(P \) but all equivalent in the sense that
\(A \leq_p B \) for all \(A, B \) in the class. (recall defn of \(\leq_p \))
i.e. poly-time algo. for one yields poly-time algo. for all.

A few problems in the class:

- Hamiltonian path/cycle
- TSP - given edge weighted graph, number \(k \),
 is there a TSP tour of weight \(\leq k \)?
- IND. SET - given graph, number \(k \),
 is there an ind. set of size \(\geq k \)?

Common feature: if the answer is YES there is some succinct info. to verify it.
"certificate"

(in particular, the TSP tour, the ind. set)

Contrast this with NO answer.
A verification alg. takes input + certificate and checks it.

Definition Alg. A is a verification alg. for problem the decision problem X if

- A takes two inputs x, y and outputs YES or NO
- for every input x for problem X, x is a YES for X iff there exists a y “certificate” s.t. $A(x, y)$ outputs YES.

Furthermore, A is a polynomial time verification alg. if

- A runs in poly. time
- there is a polynomial bound on the size of the certificate, i.e.,
 \[\forall x, x \text{ is a YES input for } X \text{ iff } \exists y \text{ with size}(y) \leq (\text{size}(x))^k, \text{ k const.} \text{ s.t. } A(x, y) \text{ outputs YES} \]

$NP = \{ \text{decision problems that can be verified in polynomial time}\}$

Example Subset Sum $\in NP$

Given numbers w_1, \ldots, w_n and W

is there a subset $S \subseteq \{1, \ldots, n\}$ s.t. $\sum_{i \in S} w_i = W$
certificate is S
 verification alg: check that $\sum w_i = N$
i.e.$ S$
poly. time

Is there a poly. time verification alg. for NO answers?
What could you give to verify that no subset has
sum W? OPEN

Example TSP (decision version) \in NP
Given graph G, weights on edges, number k,
does G have a TSP tour of length $\leq k$?
certificate: the tour, i.e. permutation of vertices
poly. time verification alg:
- check it's a permutation
- check that edges exist
- check that \sum edge weights in tour $\leq k$

coNP = $\{\text{decision problems where the NO instances can be verified in poly. time}\}$

e.g. Primes: given number n, is it prime?
Primes \in coNP

easy: to verify n is not prime, show
natural numbers $a, b \geq 2$ s.t. $a \cdot b = n$
OPEN QUESTIONS
1. $P = ? \ \text{NP}$
2. $\text{NP} = ? \ \text{coNP}$
3. $P = ? \ \text{NP} \cap \text{coNP}$

Properties
- $P \subseteq \text{NP}, \quad P \subseteq \text{coNP}$
- any problem in NP can be solved in time $O(2^n)$ by trying all certificates one by one
Definition: A decision problem X is NP-complete if

- $X \in \text{NP}$
- for every $Y \in \text{NP}$, $Y \leq_p X$

i.e., X is [one of] the hardest problems in NP.

Two important implications of X being NP-complete:

- if $X \in \text{P}$ then $\text{P} = \text{NP}$
- if X cannot be solved in poly-time then no NP-complete problem can be solved in poly-time
- if $X \in \text{coNP}$ then $\text{NP} = \text{coNP}$ (this needs proof)

The first NP-completeness proof is difficult.

Subsequent NP-completeness proofs are easier because \leq_p is transitive.

$Y \leq_p X$ and $X \leq_p Z$ implies $Y \leq_p Z$.

So to prove Z is NP-complete we just need to prove $X \leq_p Z$ where X is a known NP-complete problem.
Summary: To prove \(\mathcal{L} \) is \(\text{NP-complete} \)
1. prove \(\mathcal{L} \in \text{NP} \)
2. prove \(X \leq_P \mathcal{L} \) for known \(\text{NP-complete} \) problem \(X \)

Our first \(\text{NP-complete} \) problem: Circuit Satisfiability
(proof later - also definition)

2nd \(\text{NP-complete} \) problem: Satisfiability
(proof later, but will define the problem now)

Satisfiability
Input: a \text{Boolean formula} made of \text{Boolean variables}, \(\land "\text{and}" \), \(\lor "\text{or}" \), \(\neg "\text{not}" \),
e.g. \(\neg(x_1 \land x_2) \lor (x_3 \land (x_5 \lor \neg x_4)) \)

Question: Is there an assignment of True/False to the variables to make the formula True?

Ex. Satisfiability \(\in \text{NP} \).
Sat is \(\text{NP-complete} \), even the special form from
Assign 4, "CNF" - Conjunctive Normal Form

e.g. \((x_1 \lor \neg x_2 \lor x_3) \land (x_3 \lor x_4) \land (x_3 \lor x_4 \lor \neg x_5) \)

- clause
is \(\lor \) of literals

- formula is \(\land \) of clauses
In fact it’s still NP-complete when all clauses have 3 literals — 3-SAT
but 2-SAT is in P

3-SAT
Input: A Boolean formula that is an \(\land \) of clauses,
each clause an \(\lor \) of 3 literals, each literal
a variable or negation of variable.
Question: Is there an assignment of True/False to
variables that makes the formula True?

\[\text{III} \] 3-SAT is NP-complete [pf. later].

Ind. Set
Input: Graph \(G = (V, \varepsilon) \), number \(k \)
Q: Does \(G \) have an independent set of size \(\geq k \)
i.e. a set \(S \subseteq V \) s.t.
there is no edge \((u,v)\) with \(u,v \in S \)

\[\text{Thm} \] Ind. Set is NP-complete
pf. 1. Ind. Set \(\in \text{NP} \) — we saw this already
2. 3-SAT \(\leq_p \) Ind. Set.
Suppose we have a (black box) poly-time alg. for Ind. Set,
give a poly-time alg. for 3-SAT
Input: 3-SAT formula \(F \)
clauses \(C_1, \ldots, C_m \), variables \(x_1, \ldots, x_n \)
$C_i = (l_{i_1} \lor l_{i_2} \lor l_{i_3})$

Create a graph G on vertices l_{ij} $i=1\ldots m$ $j=1,2,3$

Join literals in a clause

Join literals that are negation of each other e.g. $(x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor \neg x_3)$

G has poly. size — $3m$ vertices

Claim G has an Ind. Set of size $\geq m$ if F is satisfiable

Thus our 3-SAT alg. is

- construct G
- run Ind. Set alg. on G, m
- output the YES/NO answer.

This alg. runs in poly. time.

Proof of Claim

\Leftarrow Suppose F is satisfiable

Pick one vertex from each Δ corresponding to a True literal. Gives Ind. set of size m
Suppose G has ind. set S of size m. S can only have one vertex from each Δ. S cannot use x and $\neg x$.

Thus we can set all literals in S True and this satisfies the formula. (If a variable isn't set by S (i.e. neither y nor $\neg y$ in S), then can set it arbitrarily.

Ex. Carry out this construction on an example.