Dynamic Programming

Key ideas of dynamic programming: identify subproblems (not too many) and an order of solving them such that each subproblem can be solved by combining previously solved subproblems.
Constructing optimum binary search trees

Given items 1 ... n
probabilities \(p_1 \ldots p_n \)
Construct a binary search tree
to minimize search cost \(\sum_i p_i \text{ depth}(i) \)

\(p = \ldots = p_5 = \frac{1}{5} \)

\[
\text{search cost} = \frac{1}{5} + 2 \cdot \frac{2}{5} + 2 \cdot \frac{3}{5}
\]
\(= \frac{7}{5} \quad \text{# nodes} \rightarrow \text{depth} \)

\(p_1 = .6 \quad p_2 = p_3 = p_4 = p_5 = .1 \)

\[
\begin{align*}
\text{cost:} & = 1(0.6) + 2(0.1) + 3(0.6) + 3(0.1) \\
& = .6 + .2 + 1.8 + .3 = 2.9
\end{align*}
\]

[In case you've seen optimum Huffman trees, this is different in that leaf ordering is fixed.

To apply dynamic programming:
subproblems: opt. binary search tree for items i ... j
order subproblems by # items, i.e., by j-i
to solve i ... j
tree for \(i \ldots k-1 \)

Try all choices for k

tree for \(k+1 \ldots j \)
Details

\[M[i,j] = \min_{k=i}^{j} \left[\sum_{k=i}^{j} M[i,k-1] + M[k+1,j] \right] + \sum_{t=i}^{j} P_t \]

- independent of \(k \) choice of \(k \)

How to compute \(\sum_{t=i}^{j} P_t \)

First compute \(P[j] = \sum_{j=1}^{j} P_j \) \(P[0] = 0 \)

then we can get \(\sum_{t=i}^{j} P_t \) as \(P[j] - P[i-1] \)

for \(i = 1 \ldots n \) \(M[i,i] \leftarrow P[i] \) \(M[i,i-1] \leftarrow 0 \)

for \(d = 1 \ldots n-1 \) \(\& d \) is \(j-i \) in above

for \(i = 1 \ldots n-d \)

* solve for \(M[i,i+d] \)

best \(\leftarrow \infty \) \& or a very large number

for \(k = i \ldots i+d \)

\(\text{temp} \leftarrow M[i,k-1] + M[k+1,i+d] \)

if \(\text{temp} < \) best then \(\text{best} \leftarrow \text{temp} \)

end

\(M[i,i+d] \leftarrow \) best + \(P[i+d] - P[i-1] \)

end

end

\# subproblems

Run time \(O(n^2 \cdot n) = O(n^3) \) time per subproblem
Dynamic Programming for 0-1 Knapsack

Recall the knapsack problem: Given items 1, 2, ..., n, where item i has weight w_i and value v_i ($w_i, v_i \in \mathbb{Z}$) choose a subset S of items s.t. \(\sum_{i \in S} w_i \leq W \) and \(\sum_{i \in S} v_i \) is maximized.

Recall that we considered the fractional version (can use fractions of items e.g. flour, rice) where greedy alg. works. Today we consider the 0-1 version where items are indivisible (e.g. flashlight, tent).

First attempts like weighted interval scheduling, distinguish whether item n is in or out:

- if $n \notin S$ - look for optimal solution for 1...n-1
- if $n \in S$ - want subset S of 1...n-1 with
 \[
 \sum_{i \in S} w_i \leq W - w_n
 \]
 the space left in the knapsack.

We must solve a subproblem with different weight capacity.
Subproblems: one for each pair \(i, w\), \(i=0 \ldots n\), \(w=0 \ldots W\)

Find subset \(S \subseteq \{1 \ldots i\}\) s.t.
\[
\sum_{i \in S} w_i \leq w \quad \text{and} \quad \sum_{i \in S} v_i \quad \text{is maximized}
\]

\(\text{Let } M(i, w) = \max_{S} \sum_{i \in S} v_i\)

To find \(M(i, w)\):

* if \(w_i > w\) then \(M(i, w) \leftarrow M(i-1, w)\)
* else \(M(i, w) \leftarrow \max \left\{ M(i-1, w) \right\} \quad \text{if don't use } i
\)
\[
\left\{ v_i + M(i-1, w-w_i) \right\} \quad \text{if use } i
\]

Pseudocode and ordering of subproblems:

Use matrix \(M[0 \ldots n, 0 \ldots W]\)

Initialize \(M[0, w] \leftarrow 0\) \(w=0 \ldots W\)

for \(i=1 \ldots n\)

for \(w=0 \ldots W\)

compute \(M[i, w]\) using

Analysis:

We have a nested loop

So \(O(n \cdot W)\)

This is not a polynomial time algorithm. It is pseudo-polynomial time.

The input is \(w_1 \ldots w_n, v_1 \ldots v_n, W\)

Size of input is sum of # bits.
W is one of the numbers in the input. The size of the input counts the size of W — let's say it has k bits, \(k = \Theta(\log W) \).

But the algorithm takes \(O(n \cdot W) \) — that is, \(O(n \cdot 2^k) \) so it's exponential in the input size.

Run-time is polynomial in the value of W rather than size of W.

Finding the actual solution for knapsack: Two methods:
1. backtracking
2. alter above code to store more info.

1. Backtracking: Use \(M \) to recover solution
 \(i = n, w = W, S = \emptyset \)
 while \(i > 0 \)
 if \(M(i, w) = M(i-1, w) \) /* didn't use \(i \)
 \(i = i-1 \)
 else /* used \(i \)
 \(S = S \cup \{i\} \)
 \(i = i-1, w = w - w_i \)
 end
2. enhance original code

- when we set \(M(i, w) \)
- also set \(\text{Flag}(i, w) \) — do we use item \(i \) or not to get \(M(i, w) \) (we still need backtracking)

- or even store \(\text{Soln}(i, w) \) — list of items to get \(M(i, w) \) (no backtracking needed)

Trade-offs:

(2) uses more space
(1) duplicates tests used to compute \(M \)
Memoization

- use recursion, rather than explicitly solving all subproblems bottom-up as we've been doing so far.
- danger - that you solve the same subproblem over and over (possibly taking exponential time, e.g.
 \[T(n) = 2T(n-1) + O(1) \] is exponential)
- fix - when you solve a subproblem, store the solution. Before (re)-solving, check if you have a stored solution. Solutions can be stored in a matrix or in a hash table.
- advantage - maybe you don't solve all subproblems.

- disadvantages
 - harder to analyze run-time
 - overhead of recursive approach takes more time.
Common subproblems in dynamic programming

1. Input x_1, \ldots, x_n
 - Subproblems x_i, \ldots, x_i
 - Weighted interval scheduling

2. Input x_1, \ldots, x_n
 - Subproblems x_i, \ldots, x_j
 - # subproblems $O(n^2)$
 - Optimal binary search tree

3. Input $x_1, \ldots, x_n, y_1, \ldots, y_m$
 - Subproblems x_i, \ldots, x_i and y_1, \ldots, y_j
 - # subproblems $O(n \cdot m)$
 - Edit distance

4. Input rooted tree on n nodes
 - # subproblems $O(n)$
 - Not covered in this course.