ASSIGNMENT 7

DUE: Wednesday November 8, 7 PM. DO NOT COPY. ACKNOWLEDGE YOUR SOURCES.

Please read http://www.student.cs.uwaterloo.ca/~cs341 for general instructions and policies. In particular, note that “giving” an algorithm includes justifying correctness and run time.

1. [10 marks] Depth First Search and Topological Sort. Let \(G \) be a directed acyclic graph. We want a linear time algorithm to decide if there is a directed path in \(G \) that goes through every vertex exactly once. For each of the following approaches, either prove or disprove that it works correctly.

 (a) [5 marks] Run DFS from some vertex. If the DFS tree is a path, then output the path, otherwise output FAIL.

 (b) [5 marks] Run DFS to find a topological sort of the graph and test if that ordering is a directed path. If it is, then output the path, otherwise output FAIL. (Recall that we get a topological sort by ordering the vertices in decreasing order of finish time.)

2. [10 marks] Path length. Given an undirected graph \(G \) with non-negative weights on the edges and a start node \(s \), there may be more than one shortest path from \(s \) to \(v \). In this case we prefer the shortest path with the fewest edges. Define the hop number, \(h(v) \) to be the minimum number of edges in a shortest path from \(s \) to \(v \). Define \(h(s) \) to be 0. Give an \(O(m \log n) \) time algorithm to compute the hop numbers of all the vertices of \(G \). Here \(n \) is the number of vertices and \(m \) is the number of edges.

3. [10 marks] MST. Suppose you have an edge weighted undirected graph \(G \) and a minimum spanning tree \(T \). Let the weight function be \(w : E \to \mathbb{R}^\geq 0 \). One edge \(e = (u, v) \) changes its weight and we want to update the minimum spanning tree. There are 4 cases. In each case give a linear time algorithm to update \(T \). You may assume that \(T \) is stored as adjacency lists.

 (a) \(e \not\in T \) and its weight goes up

 (b) \(e \not\in T \) and its weight goes down

 (c) \(e \in T \) and its weight goes down

 (d) \(e \in T \) and its weight goes up