Assignment 2 (due Monday, February 10, 6:00pm)

Instructions:

- Hand in your assignment using Crowdmark. Detailed instructions are on the course website.
- Give complete legible solutions to all questions.
- Your answers will be marked for clarity as well as correctness.
- For any algorithm you present, you should justify its correctness (if it is not obvious) and analyze the complexity.

1. [6 marks] Recurrence relations.
 Consider the following recurrence:

 \[T(n) = \begin{cases}
 T(\lfloor n/3 \rfloor) + T(\lfloor n/5 \rfloor) + 4 & \text{if } n \geq 2 \\
 1 & \text{if } n = 0, 1
 \end{cases} \]

 Prove that \(T(n) \in \Omega(n^{0.4}). \)

2. [10 marks] Recursion tree method.
 Consider the following algorithm that gets as an input an array \(A \) of \(n \) integers, and two indices \(1 \leq p, r \leq n \):

 \[
 \text{Alg}(A, n, p, r)
 \]
 (a) If \((r - p + 1 \leq n^{1/3}) \)
 i. \(\text{Proc1}(A, n, p, r) \)
 (b) Else
 i. \(d = \log n, t = \frac{r-p+1}{d} \)
 ii. For \(i = 1 \) to \(d \)
 \[\bullet \text{Alg}(A, n, p + (i - 1)t, p + it - 1) \]
 iii. \(\text{Proc2}(A, n, p) \) \hspace{1cm} \text{(Note: this line is outside of the For loop)}

 \(\text{Alg} \) uses the following two procedures:

 (a) \(\text{Proc1}(A, n, p, r) \) runs in time \(c \cdot s \cdot \log(s) \) for any input array, where \(c \) is a constant and \(s = r - p + 1 \) is the size of the subarray \(A[p, \ldots, r] \).
 (b) \(\text{Proc2}(A, n, p, r) \) runs in time \(c' \cdot s \cdot \log(n) \) for any input array, where \(c' \) is a constant and \(s = r - p + 1 \) is the size of the subarray \(A[p, \ldots, r] \).

 Let \(T(n) \) denote the run time of \(\text{Alg}(A, n, 1, n) \). What is \(g(n) \) such that \(T(n) = \Theta(g(n)) \)?
Guidance: In your answer, use the recursion tree method. In particular, work according to the following steps:

(a) [2 marks] What is the height of the tree?

(b) [3 marks] What is the contribution of each level of the tree, excluding the level of the leaves?

(c) [3 marks] What is the contribution of the level of the leaves?

(d) [2 marks] What is the total runtime of the algorithm?

You can assume that \(\log n \) is an integer, \(r - p + 1 / \log n \) is a positive integer, and the recurrence always stops when \(r - p + 1 = n^{1/3} \). It is beneficial to first express the run time as a function of \(n \) and \(d \), and only after substitute \(d = \log n \) (recall that if \(a^b = c \) we can take \(\log \) from both sides and get a solution for \(b \)).

Find an asymptotic \(\Theta \)-bound for the solution to the following recurrence relation by applying the Master Theorem. Show your work.

\[
T(n) = \begin{cases}
5T(n/4) + 9 \log_7 n & \text{if } n > 1 \\
1 & \text{if } n = 1.
\end{cases}
\]

Define the following sequence of numbers: \(F_0 = 0, F_1 = 1, \) and

\[
F_{2n} = (F_n + F_{n-1})^2 - F_{n-1}^2 \\
F_{2n+1} = (F_n + F_{n-1})^2 + F_n^2
\]

(This is in fact the Fibonacci number sequence, but you are not required to prove it.)

(a) [2 marks] Give a pseudocode description of an efficient divide-and-conquer algorithm to compute \(F_n \) for a given integer \(n \geq 0 \), based on the above definition.

(b) [4 marks] Prove that \(F_n \leq 2^n \) by induction, using the usual recurrence for \(F_n \), namely, \(F_n = F_{n-1} + F_{n-2} \).

(c) [8 marks] Determine a \(O \)-bound on the complexity of your algorithm from part (a) by writing down a recurrence and solving it using the Master Theorem. Here, we are interested in the bit complexity. Assume that the multiplication of two \(k \)-bit numbers requires \(O(k^{1.59}) \) time by Karatsuba's algorithm. You can use the fact that \(F_n \leq 2^n \) (which you proved in part (b)), which implies that the number of bits in \(F_n \) is at most \(n \).
5. [14 marks] Divide-and-conquer
A matrix M with r rows and c columns containing distinct integers is said to be sorted if each row and column is sorted. Namely, for every $1 \leq i < r$ and $1 \leq j < c$ it holds that

$$M(i, j) < M(i, j + 1) \quad \text{and} \quad M(i, j) < M(i + 1, j).$$

For example, the following matrix M is a sorted matrix:

$$M = \begin{pmatrix}
5 & 8 & 11 & 23 \\
6 & 9 & 14 & 25 \\
10 & 15 & 18 & 31 \\
30 & 32 & 40 & 50
\end{pmatrix}.$$

(a) [2 marks] Given a sorted matrix, which cell contains the minimum element? Prove it. Namely, if you claim that the minimum element is in cell $M(a, b)$ you need to show that for any $(a', b') \neq (a, b)$ it holds that $M(a, b) < M(a', b').$

(b) [4 marks] Given a sorted matrix M with n rows and n columns and an integer z, we want to check if z is in M. A student suggested the following algorithm:

i. Compare z with an element w in the middle of the matrix. Namely, $w = M(x_{\text{mid}}, y_{\text{mid}})$ where $x_{\text{mid}} = \left\lceil \frac{1+n}{2} \right\rceil$ and $y_{\text{mid}} = \left\lceil \frac{1+n}{2} \right\rceil$.

ii. Divide M to four sub-matrices A, B, C, D of size (roughly) $n/2 \times n/2$:

$$A = M(1, \ldots, x_{\text{mid}})(1, \ldots, y_{\text{mid}}),$$

$$B = M(1, \ldots, x_{\text{mid}})(y_{\text{mid}} + 1, \ldots, n),$$

$$C = M(x_{\text{mid}} + 1, \ldots, n)(1, \ldots, y_{\text{mid}}),$$

$$D = M(x_{\text{mid}} + 1, \ldots, n)(y_{\text{mid}} + 1, \ldots, n).$$

iii. If $z = w$, return Found.

iv. If $z < w$, we look for z recursively in the following sub-matrices (fill in the blank):

v. If $z > w$, we look for z recursively in the following sub-matrices (fill in the blank):

(c) [6 marks] Write a pseudo-code implementing the above algorithm and analyze its running time. Namely, let $T(n)$ denote the worst-case running time of the algorithm on a matrix of size $n \times n$. Write the recurrence relation and solve it.

(d) [2 marks] Write an algorithm checks if z is an element of a sorted matrix M. Your algorithm should have runtime which is better than $O(n^{1.001})$.

In the HIRING problem, the input is a positive integer t and a sequence of $n \geq 1$ pairs of positive integers $(p_1, l_1), (p_2, l_2), \ldots, (p_n, l_n)$ that correspond to the projected profit p_i you get
if you hire candidate i and the projected loss l_i if you do not hire candidate i. You can only hire t candidates; a valid solution to the problem is a subset $S \subseteq \{1, 2, \ldots, n\}$ of $|S| = t$ candidates that maximizes the total profit (accounting for losses)

$$\text{profit}(S) = \sum_{i \in S} p_i - \sum_{j \notin S} l_j$$

earned by hiring the set S of candidates.

Design a greedy algorithm to solve this optimization problem. Prove that it always returns an optimal solution. Justify correctness and analyze running time.