ASSIGNMENT 8

DUE: Wednesday November 20, 5 PM. NOTE that Crowdmark will list the due date as Friday November 22 but that ONLY applies if you are using a grace credit for this assignment.
DO NOT COPY. ACKNOWLEDGE YOUR SOURCES.

Please read http://www.student.cs.uwaterloo.ca/~cs341 for general instructions and policies. When you are asked to design an algorithm you should: (1) describe the idea of your algorithm clearly in English; (2) give pseudocode; (3) argue correctness; (4) and analyze the run time.

This assignment is about the hardness of the Shortest Simple Path problem (SSP) in its optimization and decision versions.

- **OptSSP problem:**
 Input: A directed graph G with integer weights on the edges and two vertices s and t.
 Output: The minimum weight of a simple path from s to t in G.

- **DecideSSP problem:**
 Input: A directed graph G with integer weights on the edges, two vertices s and t, and an integer k.
 Output: Is there a simple path from s to t of weight $\leq k$?

1. [6 marks] Show that the OptSSP and DecideSSP problems are equivalent with respect to polynomial-time algorithms. In other words, prove that:

 (i) **DecideSSP \leq_P OptSSP.**

 Hint. This is very easy. Start by assuming you have a polynomial time algorithm for OptSSP...

 (ii) **OptSSP \leq_P DecideSSP.**

 Hint. The obvious approach would be to run the algorithm for DecideSSP on all possible values of k to find the smallest one. An overly generous bound on the range of k is as follows: let $w = \max\{|w(e)| : e \text{ an edge of } G\}$. Then any simple path in G has weight in the range from $-nw$ to nw. This range has $2nw + 1$ integer values, so we do not get a polynomial run time if we try all of them. However, note that $\log(2nw + 1)$ is $O(\log n + \log w)$ which is a polynomial in the input size.

2. [10 marks] The **HamiltonianPath** problem (for directed graphs) is defined as follows:
 Input: A directed graph G.
 Output: Is there a simple path in G that visits every vertex exactly once?

 Prove that **HamiltonianPath \leq_P DecideSSP.**

3. [5 marks] Prove that **DecideSSP \in NP.**

 Specify the certificate (which must be of polynomial size) and the polynomial-time verification algorithm.

Your proofs for 2 and 3 show that DecideSSP is NP-complete, since HamiltonianPath is NP-complete.