CS 341, Fall 2019

PROGRAMMING ASSIGNMENT 2

DUE: Wednesday, November 20, 5 PM. DO NOT COPY. ACKNOWLEDGE YOUR SOURCES.

Please read http://www.student.cs.uwaterloo.ca/~cs341 for general instructions and policies.

1. [20 marks] **Shortest simple path.** In this problem, you will implement a program that solves the *Shortest simple path* problem from Question 1 of Assignment 7.

 The input to your program will be a directed graph \(G = (V,E) \) with integer weights on the edges and two vertices \(s,t \in V \). The graph will be given via adjacency lists. The program must output the minimum weight of a simple path from \(s \) to \(t \) in \(G \). Recall that a *simple* path is a path that does not repeat vertices, and that the weight of a path is the sum of the weights of the edges in the path.

 More specifically, the input is formatted as follows:

 - Line 1 consists of three positive integers

 \[n \ s \ t \]

 separated by whitespace. The integer \(n \) indicates that the graph \(G \) has vertex set \(\{1,2,\ldots,n\} \). The integers \(s,t \in \{1,2,\ldots,n\} \) are vertices of \(G \).

 - Lines 2 through \(n + 1 \) each consist of a list of integers

 \[k \ v_1 \ w_1 \ v_2 \ w_2 \ \cdots \ v_k \ w_k \]

 all separated by whitespace. The first integer \(k \) in the list indicates that \(k \) pairs \((v_j,w_j) \) follow. The pair \(v_j,w_j \) in line \(i + 1 \) indicates that \(G \) has an edge of weight \(w_j \) going from vertex \(i \) to vertex \(v_j \in \{1,2,\ldots,n\} \).

 The output of the program is an integer \(W \) denoting the minimum weight of a simple path from \(s \) to \(t \) in \(G \), if at least one such path exists. If \(G \) contains no path from \(s \) to \(t \), the algorithm should output *No path*.

 Implement a branch-and-bound algorithm that solves the shortest simple path problem described above. You may write your code in C, C++ or Java.

 See the next page for two example instances of the program and expected output.
Example 1. On input

\[
\begin{array}{cccc}
6 & 1 & 3 \\
2 & 2 & 10 & 4 & -1 \\
1 & 3 & 6 \\
1 & 1 & 2 \\
3 & 1 & -2 & 2 & 8 & 5 & 4 \\
2 & 3 & 2 & 4 & 1 \\
0
\end{array}
\]

the correct output is

5

since the input corresponds to a graph whose shortest simple path from vertices 1 to 3 is \(1 \rightarrow 4 \rightarrow 5 \rightarrow 3\) which has total weight \(-1 + 4 + 2 = 5\).

Example 2. On input

\[
\begin{array}{cccc}
4 & 1 & 4 \\
1 & 2 & 1 \\
1 & 3 & 1 \\
1 & 1 & 1 \\
3 & 1 & 1 & 2 & 1 & 3 & 1
\end{array}
\]

the valid output is

No path

since there is no path from vertex 1 to vertex 4 in the graph specified by the input.