Assignment 1 Part 2 (due Sunday, May 31, midnight EST)

Instructions:

- Hand in your assignment using Crowdmark. Detailed instructions are on the course website.
- Give complete legible solutions to all questions.
- Your answers will be marked for clarity as well as correctness.
- For any algorithm you present, you should justify its correctness (if it is not obvious) and analyze the complexity.

1. **[15 marks]** A group of hackers from an enemy organization has attempted to install a virus to \(n \) of your company’s computers. Your software engineers have designed a test, called \textsc{Test-Each-Other}, that takes two computers \(c_A \) and \(c_B \), where each input computer tests the other and outputs whether the other one is infected with the virus \((+\)) or not infected with the virus \((-\)). If a computer is actually \(-\) than it will always output a correct result. Unfortunately, if it is \(+\), its reply is unrelated to the real state of the other computer and hence cannot be trusted. In other words, a computer \(c_A \) that is infected with the virus can be “dishonest” and output the correct or the incorrect state of \(c_B \).

The following table summarizes the four possible outcomes of running \textsc{Test-Each-Other} on two computers \(c_A \) and \(c_B \), and what we can conclude from it. Please review the table to ensure that these are indeed the possible outcomes.

<table>
<thead>
<tr>
<th>(c_A)’s output</th>
<th>(c_B)’s output</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_B) is (-)</td>
<td>(c_A) is (-)</td>
<td>either both (-) or both (+)</td>
</tr>
<tr>
<td>(c_B) is (-)</td>
<td>(c_A) is (+)</td>
<td>at least one is (+)</td>
</tr>
<tr>
<td>(c_B) is (+)</td>
<td>(c_A) is (-)</td>
<td>at least one is (+)</td>
</tr>
<tr>
<td>(c_B) is (+)</td>
<td>(c_A) is (+)</td>
<td>at least one is (+)</td>
</tr>
</tbody>
</table>

Luckily your security experts have told you that more than \(n/2 \) computers were not infected (so they are \(-\)). Your goal is to identify all the \(+\) and \(-\) computers. Below, running one instance of \textsc{Test-Each-Other} constitutes one test.

(a) **[12 marks]** Describe an algorithm to find a single \(-\) phone by performing \(O(n) \) tests. [Hint: Think of how you can use \(O(n) \) tests to reduce the problem size by a constant factor.]

(b) **[3 marks]** Using part (a), show how to identify the condition of each computer by performing \(O(n) \) tests.
2. [12 marks] Consider the recurrence:

\[T(n) = \begin{cases}
2T(\lfloor n/9 \rfloor) + \sqrt{n} & \text{if } n \geq 9 \\
5 & \text{if } n < 9
\end{cases} \]

Prove \(T(n) = O(\sqrt{n}) \) by induction (i.e., guess-and-check or substitution method). Show what your \(c \) and \(n_0 \) are in your big-oh bound. Note that depending on the choice of your \(n_0 \), you might have to cover multiple base cases in your inductive proof.

3. [16 marks] Give tight asymptotic (\(\Theta \)) bounds for the solution to the following recurrences by using the recursion-tree method or the induction method (your choice). You may assume that \(n \) is a power of 10 in (a), or a power of 3 in (b). Show your work.

(a) [8 marks]

\[T(n) = \begin{cases}
2T(n/10) + \sqrt{n} & \text{if } n > 1 \\
7 & \text{if } n \leq 1
\end{cases} \]

(b) [8 marks]

\[T(n) = \begin{cases}
10T(n/3) + n^2 & \text{if } n > 1 \\
1 & \text{if } n \leq 1
\end{cases} \]

4. [6 marks]

(a) Solve part (a) of the previous question by the master method.

(b) Solve part (b) of the previous question by the master method.