Assignment 1 (due Friday, January 25, 6:00pm)

Instructions:

- Hand in your assignment using Crowdmark. Detailed instructions are on the course website.
- Give complete legible solutions to all questions.
- Your answers will be marked for clarity as well as correctness.
- For any algorithm you present, you should justify its correctness (if it is not obvious) and analyze the complexity.

1. [10 marks]

(a) [6 marks] Give a proof from first principles (not using limits) that $n^3 - 100n + 1000 \in \Theta(n^3)$.

(b) [4 marks] Suppose that $f(n), g(n)$ and $h(n)$ are positive-valued functions such that $f(n) \in O(h(n))$ and $g(n) \in O(h(n))$. Prove that $2.72f(n) + 3.14g(n) \in O(h(n))$.

2. [12 marks] For each pair of functions $f(n)$ and $g(n)$, fill in the correct asymptotic notation among Θ, o, and ω in the statement $f(n) \in \bigcap (g(n))$. Formal proofs are not necessary, but provide brief justifications for all of your answers. (The default base in logarithms is 2.)

(a) $f(n) = \sum_{i=1}^{n-1} (i + 1)/i^2$ vs. $g(n) = \log(n^{100})$

(b) $f(n) = n^{3/2}$ vs. $g(n) = (n + 1)^9/(n^3 - 1)^2$.

(c) $f(n) = (32768)^{n/3}$ vs. $g(n) = (6561)^{n/4}$

(d) $f(n) = (\log n)^{\log n}$ vs. $g(n) = n^{\log \log n}$. [Hint: take logarithms.]

3. [10 marks] Analyze the following pseudocode and give a tight Θ bound on the running time as a function of n. Carefully show your work.

(a) [5 marks]

1. $s = 0$
2. for $i = 1$ to n do {
 3. $j = i$
 4. while $j \leq n$ do {
 5. $j = j + i$
 6. $s = s + j$
 }
(b) [5 marks]

1. \(k = 1 \)
2. \(s = 0 \)
3. for \(i = 1 \) to \(n \) do {
4. \hspace{1em} for \(j = 1 \) to \(2k \) do
5. \hspace{2em} \(s = s + j \)
6. \hspace{1em} \(k = 2k \)
}

4. [6 marks] Consider the following problem named M3SUM: Given an array of \(n \) integers, \(S[1], \ldots, S[n] \), determine if there exist three array elements \(S[i], S[j], S[k] \) such that

\[
S[i] + S[j] = S[k]
\]

(where \(1 \leq i, j, k \leq n \) and \(i, j, k \) are all distinct). Define \(T[\ell] = 4S[\ell] - 1 \) for \(1 \leq \ell \leq n \) and define \(T[\ell + n] = -4S[\ell] + 2 \) for \(1 \leq \ell \leq n \). Show that solving 3SUM on the array \(T \) (of length \(2n \)) will solve M3SUM on the array \(S \) (so this is a reduction from M3SUM to 3SUM).

[Important: you need to show that there is a solution for M3SUM for the instance \(S \) if and only if there is a solution for 3SUM for the instance \(T \).]

5. [10 marks] Suppose Alice spends \(a_i \) dollars on the \(i \)th day and Bob spends \(b_i \) dollars on the \(i \)th day, for \(1 \leq i \leq n \). We want to determine whether there exists some set of \(t \) consecutive days during which total amount spent by Alice is exactly the same as the total amount spent by Bob in some (possibly different) set of \(t \) consecutive days. That is, we want to determine if there exist \(i, j, t \) (with \(0 \leq i, j \leq n - t \) and \(1 \leq t \leq n \)) such that

\[
a_{i+1} + a_{i+2} + \cdots + a_{i+t} = b_{j+1} + b_{j+2} + \cdots + b_{j+t}.
\]

For example, for the inputs \(10, 21, 11, 12, 19, 15 \) and \(12, 9, 2, 31, 21, 8 \), the answer is “yes” because \(11 + 12 + 19 = 9 + 2 + 31 \).

(a) [5 marks] First design and analyze an algorithm that solves the problem in \(\Theta(n^2) \) time by “brute force”.

(b) [5 marks] Design and analyze a better algorithm that solves the problem in \(\Theta(n^2 \log n) \) time. [Hint: use sorting.]

6. [21 marks] Suppose we are given an array of \(n \) integers, \(A[1], \ldots, A[n] \), and a positive integer \(k \). We want to find the maximum value of \(A[i] + A[j] \) subject to the condition that \(1 \leq i < j \leq i + k \leq n \). That is, we want the maximum sum of two array elements that are at most \(k \) apart in the array. For example, for the inputs \(10, 2, 0, 8, 1, 7, 1, 0, 11 \) and \(k = 2 \), the maximum sum is \(A[4] + A[6] = 8 + 7 = 15 \) (the two array elements are \(A[4] \) and \(A[6] \), which are two apart).
(a) [4 marks] Design and analyze a simple “brute-force” algorithm for this problem that runs in $O(kn)$ time.

(b) [8 marks] Design a divide-and-conquer algorithm for this problem in which you split the array into two equal pieces, where the “combine” operation of the algorithm runs in time $O(k)$.

(c) [4 marks] Show that this problem can be solved directly (not recursively) for an array of length $n = k$ in $O(k)$ time (this will be used as a base case for the divide-and-conquer algorithm).

(d) [5 marks] Using $n = k$ as a base case, the running time $T(n)$ for the divide-and-conquer algorithm satisfies the following recurrence which involves both k and n:

$$T(n) = \begin{cases}
2T(n/2) + O(k) & \text{if } n > k \\
O(k) & \text{if } n = k.
\end{cases}$$

Show that the solution to this recurrence is $T(n) \in O(n)$ if $n = k2^t$ for some integer t. [Hint: this can be done using either the recursion tree method or guess-and-check.]

7. [6 marks] Give a tight asymptotic (i.e., Θ) bound for the solution to the following recurrence by using the recursion-tree method (you may assume that n is a power of 4). Show your work.

$$T(n) = \begin{cases}
3T(n/4) + \sqrt{n} & \text{if } n > 1 \\
5 & \text{if } n \leq 1.
\end{cases}$$