DUE: Monday, June 24, 6 PM. DO NOT COPY. ACKNOWLEDGE YOUR SOURCES.

Please read http://www.student.cs.uwaterloo.ca/~cs341 for general instructions and policies. Also read Assignment section of course outline for clarification of what “justify” means.

Note: All logarithms are base 2 (i.e., \(\log x \) is defined as \(\log_2 x \)).

Note: For all algorithm design questions, you must give the algorithm, argue the correctness, and analyze time complexity.

1 Warmup... reductions ... and analysis

1.1. [5 marks] **Target3Sum by reduction to 3Sum.** The **Target3Sum** decision problem is: given an array \(A \) of \(n \) distinct integers, \(A = [A[1], ..., A[n]] \) and a target integer \(T \), find out if there exist three (not necessarily distinct) elements in \(A \) whose sum equals \(T \). It is easy to modify any algorithm solving the **3SUM** problem so it solves the **Target3Sum** problem. For example in **Fast3SUM** algorithm from lecture notes we could replace \(x = \text{Sorted2SUM}(A,-A[k]) \) by \(x = \text{Sorted2SUM}(A,T-A[k]) \).

However, you are not allowed to modify existing algorithm **Fast3SUM** and required to use reduction. Design a reduction based algorithm for the **Target3Sum** problem, which calls **Fast3SUM** only one time to produce the desired result. Your algorithm takes an instance of **Target3Sum**, creates a suitable instance of **3SUM** problem, and returns the outcome of the call to **Fast3SUM** as the result.

Justify correctness of you reduction, i.e. show that it always produces correct result, assuming **Fast3SUM** is correct. Analyze the running time of your algorithm.

1.2. [5 marks] **Primality testing analysis.** Consider the primality testing algorithm that tests if a given \(k \)-bit number \(n \) is prime by attempting to divide \(n \) by \(i \) for \(2 \leq i \leq \sqrt{n} \), \(i \in \mathbb{N} \).

Analyze the run time of this algorithm as a function of input size \(k \). To analyze run-time, do not use the word-RAM model. Instead, assume that you have a division method that runs in time \(\Theta(j^2) \) on \(j \)-bit integers. (This is called the “bit-complexity model”.) Does the algorithm run in polynomial time? Why or why not?

2 Greedy again ...

[10 marks] In the **JobSelection** problem, the input is a positive integer \(t \) and a sequence of \(n \) pairs of positive integers \((r_1,p_1),(r_2,p_2),\ldots,(r_n,p_n)\) that correspond to the reward \(r_i \) you earn if you complete job \(i \) and the penalty \(p_i \) that you must pay if you do not complete job \(i \). You can only complete \(t \) jobs; a valid solution to the problem is a subset \(S \subseteq \{1,2,\ldots,n\} \) of \(|S| = t \) jobs that maximizes the profit

\[
\text{profit}(S) = \sum_{i \in S} r_i - \sum_{j \notin S} p_j
\]
earned by completing the set S of jobs.

Design a greedy algorithm to solve this optimization problem. Prove that it always returns an optimal solution. Justify correctness and analyze running time.

3 Now we have two knapsacks ...

[10 marks] Consider a variation of the Knapsack problem. There are two knapsacks that have capacity $W_1 > 0$ and $W_2 > 0$, respectively. There are n items $1, 2, \ldots, n$. Item i has weight $w(i) > 0$ and two values $v_1(i) > 0$ and $v_2(i) > 0$. Here $v_k(i)$ is the value one gains by putting item i into knapsack k ($k = 1, 2$). The “Two Knapsacks Problem” is to find two disjoint subsets of items S_1 and S_2, such that

1. $\sum_{i \in S_1} w(i) \leq W_1$,
2. $\sum_{i \in S_2} w(i) \leq W_2$, and
3. $V = \sum_{i \in S_1} v_1(i) + \sum_{i \in S_2} v_2(i)$ is maximized.

Give a dynamic programming algorithm to find the maximum value V. Your algorithm does not need to find the sets S_1 and S_2. Clearly indicate what your subproblems are, and the order in which you solve them. Justify correctness of your algorithm, and analyze its running time. Is your algorithm a polynomial-time algorithm? Why or why not?

4 “DP” for Longest Oscillating Subsequence.

[10 marks] A sequence s_1, s_2, \ldots, s_k of integers is oscillating sequence if $s_1 < s_2 > s_3 < s_4 > \ldots s_k$ or $s_1 > s_2 < s_3 > s_4 < \ldots s_k$.

Design a DP algorithm that finds a longest oscillating subsequence in given list of n integers $A[1..n]$ in time $O(n^2)$. Clearly indicate what your subproblems are, and the order in which you solve them. Justify correctness of your algorithm, present DP-recurrence, and analyze its running time.