ASSIGNMENT 5

DUE: Monday, July 29, 6 PM. DO NOT COPY. ACKNOWLEDGE YOUR SOURCES.

Please read http://www.student.cs.uwaterloo.ca/~cs341 for general instructions and policies. Also read Assignment section of course outline for clarification of what “justify” means.

Note: All logarithms are base 2 (i.e., log x is defined as \(\log_2 x \)).

Note: For all algorithm design questions, you must give the algorithm, argue the correctness, and analyze time complexity.

1 Warmup... Decision vs Optimization...

1.1. [5 marks] Fair split. Suppose you have a polynomial time algorithm for the FairSplit decision problem: given a list of \(n \) integers, \(a_1, a_2, \ldots, a_n \), indexed by \(S = \{1, \ldots, n\} \), is there a partition \(S = A \cup B \) with \(A \cap B = \emptyset \) such that \(\sum_{i \in A} a_i = \sum_{i \in B} a_i \).

Show that you can use this algorithm to find such a partition \(A, B \) (if it exists) in polynomial time. If the FairSplit algorithm runs in time \(O(n^p) \), give a bound on the run time of your algorithm of finding a fair partition.

1.2. [7 marks] Satisfiability. Recall that a literal is a variable \(x_i \) or the negation of a variable \(\neg x_i \). Consider the following variant of satisfiability problem: Max2-SAT.

Input: a number \(k > 0 \), a set of \(n \) Boolean variables, \(x_1, x_2, \ldots, x_n \) and a set \(C \) of \(m \) clauses, where each clause has the form \((l_i \lor l_j) \) where \(l_i \) and \(l_j \) are literals.

Question: is there an assignment of truth-values to the variables that makes at least \(k \) of the clauses true?

Suppose you have a polynomial time algorithm for the above Max2-SAT decision problem. Show that you can use this algorithm to find the maximum number of clauses that can be made true, and to find a truth-value assignment that satisfies that number of clauses, both in polynomial time.

2 P, NP ...

2.1. [3 marks] Fair split is in NP. Show that FairSplit \(\in \text{NP} \). Be clear about your certificate and about the details of your verification algorithm and its run-time.

2.2 [3 marks] Max2-SAT \(\in \text{NP} \). Show that Max2-SAT \(\in \text{NP} \). Be clear about your certificate and about the details of your verification algorithm and its run-time.

2.3. [4 marks] In the Clique4 problem, we are given a graph \(G = (V, E) \) with maximum degree 4 and a positive integer \(k \); we must determine if \(G \) has a clique of size at least \(k \) or not. (A graph \(G \) has maximum degree \(d \) if every vertex in \(G \) is incident to at most \(d \) edges.)

Prove that Clique4 \(\in \text{P} \).
3 NPC ...

3.1. [7 marks] Prove that **FairSplit** ∈ NPC.

3.2. [7 marks] Prove that the following problem is NP-complete. Given two graphs, \(H = (V_H, E_H) \), and \(G = (V_G, E_G) \), is \(H \) a subgraph of \(G \), i.e. is there a mapping \(\pi \) of the vertices of \(H \) to the vertices of \(G \) such that \(\pi \) is one-to-one (it never maps two vertices of \(H \) to the same vertex of \(G \)) and such that for every pair of vertices \(u, v \in V_H \), we have \((u, v) \in E_H \) iff \((\pi(u), \pi(v)) \in E_G \).

4 More NPC.

4.1. [7 marks] Consider the following modification of the **FairSplit** problem: **FairSplit100**

Input: a list of \(n \) integers, \(a_1, a_2, \ldots, a_n \), indexed by \(S = \{1, \ldots, n\} \).

Question: is there a partition \(S = A \cup B \) with \(A \cap B = \emptyset \) such that \(\sum_{i \in A} a_i - \sum_{i \in B} a_i < 100 \)?

Prove that **FairSplit100** ∈ NPC.

4.2. [7 marks] Show that the following decision problem is NP-complete: given a graph \(G \) in which every vertex has even degree, and an integer \(k \), does \(G \) have a vertex cover with at most \(k \) vertices?

(The degree of a vertex is the number of edges incident to it.)

Hint: given an arbitrary graph \(G \), find a way to modify it by adding some vertices and edges so that all the vertices of the new graph have even degree. You can use the following fact without proof: in any undirected graph \(G \), the total number of vertices of odd degree is always an even number (possibly zero).