Dynamic Programming II

Recall the maximum common subsequence problem from last day:

| T A R M A C | C A T A M A R A N |

More sophisticated: count # changes

e.g., You: Pythagorus
Google: Pythagoras?

You: recurrence
Google: recurrence?

A change is:
- add a letter
- delete a letter
- replace a letter

The problem comes up in bioinformatics for DNA strings.
DNA is a sequence of chromosomes, i.e., a string over the alphabet A, C, T, G.

This is called edit distance.

Two string can be aligned in different ways:

e.g. A A C A T
 A A A A G
 3 changes
 (2 gaps, 1 mismatch)

e.g. A A C A T
 A A A A G
 2 changes
 (2 mismatches)
Problem: Given 2 strings $x_1..x_m$ and $y_1..y_n$, compute their edit distance. I.e., find the alignment that gives the minimum number of changes.

Dynamic Programming Algorithm

Subproblem: $M(i, j) =$ minimum number of changes to match $x_1..x_{i-1}x_i$ and $y_1..y_{j-1}y_j$.

choices:
- match x_i to y_i, pay replacement cost if they differ
 - match x_i to blank (delete x_i)
 - match y_j to blank (add y_j)

\[
M(i, j) = \min \begin{cases}
 M(i-1, j-1) & \text{if } x_i = y_j \\
 r + M(i-1, j-1) & \text{if } x_i \neq y_j \\
 d + M(i-1, j) & \text{match } x_i \text{ to blank} \\
 a + M(i, j-1) & \text{match } y_j \text{ to blank}
\end{cases}
\]

where:

- $r =$ replacement cost
- $d =$ delete cost
- $a =$ add cost

So far, we used $r = d = a = 1$ (i.e., count # changes).

More sophisticated: $r(x_i, y_j)$ - replacement cost depends on the letters.

- e.g., $r(a, s) = 1$ because these keys are close on typewriter
- $r(a, c) = 2$... not too close
In what order do we solve subproblems? Same as last day.

\[
M[0..m, 0..n]
\]
for \(i = 0..m \): \(M(i, 0) = id \)
for \(j = 0..n \): \(M(0, j) = ja \)
for \(i = 1..m \)
 for \(j = 1..n \)
 \[M(i, j) = \ldots \]

Analysis: \(O(nm) \) time and \(O(nm) \) space
\((nm \text{ subproblems, constant time each)}\)

A different application: music pattern matching
Recall Interval Scheduling aka Activity Selection: Given a set of intervals I, find a maximum size subset of disjoint intervals:

![Diagram of intervals]

Weighted Interval Scheduling

Weighted Interval Scheduling: Given I and weight $w(i)$ for each $i \in I$, find set $S \subseteq I$ such that no two intervals overlap and maximize $\sum_{i \in S} w(i)$.

e.g., you have preferences for certain activities.

A more general problem:

- I is a set of element ("items")
- $w(i) = \text{weight of item } i$
- some pairs (i, j) conflict

Find a maximum weight subset $S \subset I$ with no conflicting pairs.

Can be modeled as a graph: vertex = item edge = conflict

Problem is Max Weight Independent Set and we will see later that it is NP-complete.
A general approach to finding max weight independent set.
Consider one item i. Either we choose it or not.

$$\text{OPT}(I) = \max\{\text{OPT}(I - \{i\}), w(i) + \text{OPT}(I')\} \quad \text{where} \quad I' = \text{intervals disjoint from } i$$

In general this recursive solution does not give polynomial time.

$$T(n) = 2T(n - 1) + O(1) \implies T(n) \in \Theta(2^n)$$

Essentially, we may end up solving subproblems for each of the 2^n subsets of I.

When $I = \text{set of intervals}$, we can do better with dynamic programming.

Order intervals $1..n$ by right endpoint

something nice happens

Intervals disjoint from interval i are $1..j$ for some j

For each i, let $p(i) = \text{largest index } j < i$ s.t. interval j is disjoint from interval i.

Now we can solve subproblems.

Let $M(i) = \max \text{ weight subset of intervals } 1..i$

$$M(i) = \max\{M(i - 1), w(i) + M(p(i))\}$$
A Dynamic Programming algorithm – computes the actual set, not just weight

Sort intervals 1..n by right endpoint.

\[M(0) := 0; \quad S(0) := \emptyset \]

\textbf{for} \ i \ \textbf{from} \ 1 \ \textbf{to} \ n \ \textbf{do} \\
\quad p(i) := i - 1 \\
\quad \textbf{while} \ p(i) \neq 0 \ \textbf{and} \ \text{intervals} \ i \ \text{and} \ p(i) \ \text{overlap} \ \textbf{do} \\
\quad \quad p(i) := p(i) - 1 \\
\quad \textbf{od} \\
\quad \textbf{if} \ M(i - 1) \geq w(i) + M(p(i)) \ \textbf{then} \\
\quad \quad M(i) := M(i - 1); \quad S(i) := S(i - 1) \\
\quad \textbf{else} \\
\quad \quad M(i) := w(i) + M(p(i)); \quad S(i) := \{i\} \cup S(p(i)) \\
\quad \textbf{fi} \\
\textbf{od}

\underline{Final answer: weight \(M(n) \), set \(S(n) \) }

\text{Time:} \ n \ \text{subproblems, each} \ O(n) \\
\text{so total of} \ O(n^2) + O(n \log n) \ \text{to sort.}

\text{Space:} \ O(n^2) - \text{storing} \ n \ \text{sets, each} \ O(n) \\

\underline{Next:}

1. computing all \(p(i) \) values before-hand to save time
2. computing \(S \) by backtracking to save space
How to compute $p(i)$: We use sorted order $1..n$ by right endpoint
AND sorted order $\ell_1..\ell_n$ by left endpoint

\[
j := n \\
\text{for } k \text{ from } n \text{ downto } 1 \text{ do} \\
\quad \text{while } \ell_k \text{ overlaps } j \text{ do} \\
\quad \quad j := j - 1 \\
\quad \text{od} \\
\quad p(\ell_k) := j \\
\text{od}
\]

Run time $\Theta(n)$ after sorting

Final algorithm:
Sort intervals $1..n$ by right endpoint.
Sort intervals by left endpoint.
Compute $p(i)$ for all i.
$M(0) := 0 \\
\text{for } i \text{ from } 1 \text{ to } n \text{ do} \\
\quad M(i) := \max\{M(i - 1), w(i) + M(p(i))\} \\
\text{od}

Runtime: $\underbrace{O(n \log n)}_{\text{sort}} + \underbrace{O(n)}_{\text{p(*)}} + O(n \cdot c)$
Backtracking to compute S: Use recursive routine to S-OPT

\[
S\text{-OPT}(i)
\begin{align*}
\text{if } i &= 0 \text{ then} \\
& \quad \text{return } \emptyset \\
\text{elif } M(i-1) &\geq w(i) + M(p(i)) \text{ then} \\
& \quad \text{return } S\text{-OPT}(i-1) \\
\text{else} \\
& \quad \text{return } \{i\} \cup S\text{-OPT}(p(i)) \\
\end{align*}
\]

The set we want is S-OPT(n).

Time: $O(n)$

Space: $O(n)$

Summary

- A general idea to find an optimal subset is to solve subproblems where one element is in or out.
 Exponential in general; can sometimes be efficient.

- Key ideas of dynamic programming:
 - Identify subproblems (not too many) together with
 - an order of solving them such that each subproblem can be solved by combining a few previously solved subproblems.